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ABSTRACT

Flight accidents with modern aircraft are often a result of
complex dynamics of the "pilot (automaton1) - vehicle -
operational environment" system.  When a "critical mass"
of the system's complexity exceeds a certain level, a
"chain reaction" of irreversible cause-and-effect links can
be spontaneously triggered in the system behavior lead-
ing to a catastrophe.  An affordable, practically tested
technique is proposed to complement current methods of
flight accident analysis.  A generic situational model of
the system behavior and a computer are employed as a
virtual test article. This model includes a six-degree-of-
freedom non-linear flight dynamics model, a generic situ-
ational pilot model ("silicon pilot"), models of anticipated
operational factors (conditions), and a tool for flight sce-
nario planning.  Available flight recorder data are used to
tune the model and reconstruct the accident.  Then the
model is used for in-depth examination of the accident's
"neighborhood" in autonomous "what-if" simulation
experiments under actual and hypothetical conditions.
The latter may include pilot errors, piloting tactics varia-
tions, onboard system's failures and errors, and weather
conditions, as well as combinations of these factors.  Pro-
gramming and piloting skills are not mandatory for the
user.  Potential applications include: flight accident inves-
tigation under uncertainty, advanced pilot training,
research into aircraft practical aerodynamics, design of
automatic flight control systems, and onboard AI technol-
ogies for flight safety.

RESEARCH TASK 

PROBLEM – Flight accidents are often a result of com-
plex dynamics and negative interactions in the "pilot
(automaton) - vehicle - operational environment" sys-
tem.  Blaming a single operational factor for an accident,
such as "human error" or "mechanical failure", would

mean to underestimate the problem.  A side effect of
such reactive, "mono-factor" approaches to flight safety is
a danger of reoccurrence of past accident patterns in the
future.  Flight accidents with modern aircraft can be
explained using the notion of "chain reaction"2. When a
"critical mass" of the system's complexity exceeds a cer-
tain level, "chain reaction" a of several interrelated events
and processes3 can be spontaneously triggered in flight.
Flight automation based on human- or computer-cen-
tered principles can make potentially catastrophic links in
the system dynamics even less predictable and manage-
able.  

Basically, there are two goals of flight accident analysis.
The first goal is to identify a cause-and-effect chain
responsible for a catastrophe.  The second one is to
develop a proactive, physics-based remedial strategy for
prevention or resolution of the given and similar accident
patterns in the future.  To achieve these goals, adequate
analytical methods are required.  Manned simulations,
flight testing, flight dynamics analysis and formal logic
methods used for accident examination have inherent
limitations.  This explains in part the fact that the causes
of several aviation catastrophes remain unknown [2, 3]. 

SOLUTION APPROACH  –  An affordable, practically
tested technique is proposed for flight accident analysis
under uncertainty.  A generic model of the "pilot (automa-
ton) - vehicle - operational environment" system behavior
and a computer (PC) are employed as a virtual test arti-
cle.  This model includes a situational pilot model ("silicon
pilot"), models of key (anticipated) operational factors of
flight, a tool for flight scenario planning, and a non-linear
six-degree-of-freedom model of the vehicle motion.
Flight records and other source data are used to tune the
model, identify unknown weather conditions and recon-
struct the accident's profile with the assistance of the "sil-
icon pilot" and scenario planning tool.   Then, this model
can be used for detailed examination of a complex situa-

1. control mechanism designed to follow automatically a pre-
determined sequence of operations or respond to 
encoded instructions

2. irreversible propagation of strong cause-and-effect links in 
the system behavior [4, 1, 6]

3. which are not critically dangerous alone
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tional sub-domain around the accident (accident’s "neigh-
borhood") in autonomous4 simulation experiments.  The
objective is to assess the sensitivity of the accident sce-
nario to key operational conditions in a systematic way.
These factors may include pilot errors, piloting tactics
variations, onboard system's failures and errors, weather
effects, as well as combinations of these conditions. 

BENEFITS – As the result, various operational hypothe-
ses concerning a complex flight accident can be checked
in detail.  A distinguishing feature is that this task can be
accomplished by a non-pilot and without a flight simula-
tor.  Programming skills are not mandatory for the user.
However, a pre-requisite for the use of this method is the
availability of a comprehensive database of the vehicle’s
input characteristics.  In simulation experiments with the
model, real, hypothetical and mixed scenarios can be
modeled in detail, quantitatively evaluated and stored in
compact formats on a computer for future reuse. Thus,
possible alternative developments of the accident and its
"neighborhood” can be quantified and compared. Poten-
tial application domains include flight accident investiga-
tion under uncertainty conditions; advanced pilot training;
research into aircraft applied aerodynamics, automatic
flight control systems, and onboard AI technologies for
flight safety [4, 6].  

PAPER CONTENT – In this paper, a generic method is
proposed for quantitative and qualitative analysis of a
flight accident under uncertainty based on an autono-
mous flight situation model.  A system of input data struc-
tures of the model is presented in detail.  Main research
steps of the analysis method are briefly described.  A
case study of a severe flight accident, which has been
examined by means of this method, can be found in [4].
This paper is addressed to researchers, managers and
students working in the sector of flight safety enhance-
ment.

INTRODUCTION TO METHOD

In this section, general concepts of the method will be
introduced. 

DEFINITIONS – The system under examination is a "pilot
(automaton) - vehicle - operational environment" sys-
tem.  The main operational factors (or conditions) of
flight, which may contribute to flight accidents, are asso-
ciated5 with the three major constituents of the system,
namely: human pilot (or automaton), vehicle and its sub-
systems, and external operational environment.  There-
fore, flight accident analysis should be performed on the
system level.  The subject of analysis are the system
dynamics under complex (multi-factor) flight situations. 

The flight situation can be defined as a recognizable frag-
ment of flight, which lasts from several seconds to several
minutes, depending on the scope of analysis and vehicle
mission.  Each flight situation has specific objectives,
logic and operational content, which require coherent
pilot control tactics.  Normally, a flight situation is associ-
ated with (and thus can be named after) a distinctive
phase, stage or mode of flight. It also includes key
demanding operational conditions (factors) affecting the
situation.  The complex (multi-factor) flight situation is a
flight situation, which incorporates several interacting
demanding conditions (factors).  

The “chain reaction” situation is a complex flight situation
with quick and irreversible propagation, towards a catas-
trophe, of strong cause-and-effect links between several
component factors [4, 1].  Under such chaining conditions
any subsequent control input may become inadequate or
inefficient.  Therefore, the flight accident can be consid-
ered as a complex or "chain reaction" flight situation.
One of the requirements to the flight accident analysis
process is to have a capability of generating comprehen-
sive knowledge of complex system dynamics in an acci-
dent in the presence of several operational factors.  As a
"knowledge generator", an autonomous flight situation
model is proposed.

AUTONOMOUS FLIGHT SITUATION MODEL   –  The
autonomous flight situation model is a system of generic
algorithms and data structures, which are designed for
modeling and simulation of the behavior of the "pilot
(automaton) - vehicle - operational environment" system
under standard and complex flight situations.  In this pro-
cess, a human pilot and a flight simulator are not
required.  The model consists of the following main com-
ponents: 

• a situational pilot model ("silicon pilot")

• a tool for automated planning and execution of flight
scenarios in simulation experiments 

• mathematical models of key operational factors of
flight (pilot errors, rain and wind conditions, mechani-
cal failures, runway surface condition, atmospheric
condition, and some other), and

• a six-degree-of-freedom non-linear mathematical
model of the vehicle motion. 

As the result of such synthesis, the model is capable of
adequate description and flexible computer simulations
of complex system dynamics under various demanding
operational conditions. Again, a pilot and a flight simula-
tor are not required. 

INPUT REQUIREMENTS – A pre-requisite for success-
ful application of this method is the availability of a six-
degree-of-freedom non-linear mathematical model of the
vehicle motion under anticipated conditions.  In particular,
the following groups of input characteristics are required:
aerodynamic characteristics, stability and control deriva-
tives; moments and products of inertia; engine data

4. the autonomous flight simulation experiment means that 
neither a pilot nor a flight simulator are required [1] 

5. except for the acts of terrorism and other force majeure 
situations
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(thrust characteristics, including reversed thrust, and fuel
consumption, etc.); specifications of the automatic flight
control system (sensors, logic, actuators, effectors, etc.);
landing gear characteristics (shocks, wheels, brakes,
control, etc.).

PURPOSE AND TASKS – The purpose of the proposed
method is to help identify and mitigate “chain reaction”
situations in the behavior of the “pilot - vehicle - opera-
tional environment” system based on autonomous com-
puter simulation experiments and past flight accident
patterns.  

There are two tasks in this analysis process.  The first
task is to reconstruct the accident and calculate its char-
acteristics, using the autonomous flight situation model
and flight recorder data.  The objective is to reveal an
invariant, physics-based causal pattern (scenario) of the
accident.  The second task is to examine the system
dynamics under hypothetical “neighboring” flight situa-
tions.  The objective here is to assess the sensitivity of
the accident scenario(s) to various demanding opera-
tional conditions and thus reveal a "what-if" (branching)
structure of accident's "neighborhood". The recon-
structed flight accident and the cause-and-effect struc-
ture of its “neighborhood” constitute the output of the
flight accident analysis process.  Finally, a subset of safe
situations, which are sufficiently robust to anticipated
fluctuations in key operational conditions, can be pro-
posed as a basis for recovery tactics. 

PREVIOUS APPLICATIONS – In 1985-98 more of this
method had been applied to study about 35 problems in
flight safety related fields for 17 aircraft types and three
design projects, including airplanes, helicopters, a tilt-
rotor aircraft and an aerospace vehicle [1, 5]. 

TECHNICAL CAPABILITIES – A list of capabilities of the
autonomous flight situation model includes: 

• simulation of various actual, hypothetical, and mixed
flight cases with a required degree of accuracy and
detail6

• flexible planning of various complex flight scenarios

• "what … if ... ?" flight experimentation capability

• fast tuning on to new, "neighboring" or derivative situ-
ations without the necessity  to recompile software 

• simulation of a given flight scenario in exact detail or
with modifications at any time in the future

• identification of key operational conditions of flight
(e.g.: wind shear, heavy shower)

• virtual 'freezing' of selected system state and control
variables to check work hypotheses

• autonomy and independence (flight simulator hard-
ware, programming and piloting skills are not
required).

FLIGHT SCENARIO DATA SYSTEM

In this section, a system of definitions and unified data
structures, which constitute the input of the autonomous
flight situation model (the flight situation scenario), are
described.  The level of description is sufficient for profes-
sional planning and execution of simulation experiments
with the model on a computer.

MAIN OBJECTS – A list of main data objects of the
autonomous flight situation model includes the following7:

• flight variable (v)

• flight event (E)

• flight process (Π)

• elementary flight situation (s`)

• piloting task (T)

• system state observer (O)

• control procedure (P)

• onboard system’s failure (F)

• rain type process (R)

• wind type process (W)

• time-history type process (H)

• runway surface condition (Y)

• flight situation scenario (S).

These objects are sufficient for comprehensive modeling
and simulation of complex flight situations, including acci-
dents.  The rest of this section contains a detailed
description of these objects with examples, as well as the
relationships between them.

FLIGHT VARIBLE – The flight model variable (flight vari-
able, model variable, or system variable), v, is a time-
dependent parameter, which describes a certain aspect
of the system behavior.  Flight variables can be grouped
as follows: 

• numeric, symbolic, fuzzy, linguistic, etc. (mathemati-
cal classification)

• discrete and continuous (classification by time occur-
rence) 

• vehicle dynamics, flight control, airborne system
functions and failures, external conditions (classifica-
tion by system components).

Examples are as follows: altitude, airspeed, TAS, IAS,
wing AoA, Euler parameter e0, roll acceleration (in stabil-
ity axes), g-factor, wind gradient, horizontal distance, flap
position, heading angle, last flight event, wheels position
flag, yawing moment coefficient due to thrust asymmetry
(body axes), left-hand gear shock absorber displace-
ment, elevator deflection due to autopilot, total lift coeffi-
cient (body axes), rain intensity, horizontal wind
component (earth axes), left engine thrust (body axes),
roll rate (stability axes), roll acceleration (earth axes),

6. provided that a comprehensive aerodynamic and other 
input data base of the vehicle is available 7. for other objects ref. [4]
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atmospheric pressure, etc.  Note that the nomenclature
of variables produced in the autonomous model is much
broader than a set of variables recorded in a test flight.

In the system component classification, main vectors of
flight variables are: x = (x1, ..., xp) - vehicle dynamics, u =
(u1, ..., uq) - flight control, and w = (w1, ..., wr) - external
(weather) conditions.  The vocabulary of flight variables is
represented as an ordered set, V = { v1, ..., vk, ..., vN(V) }.
Note that in practical applications N(V) ∈ {200, ... , 1000}.

The frame-specification of a flight variable from V
includes its code, minimum and maximum values (for dis-
playing and checking purposes), name, measurement
unit, coordinate system (if applicable), definition, and
some other attributes:

R[vi] =    { i,  vmin, vmax, Nm, Un, Sys, Def,  … } (1)

For example, R[v22] = { 22, -25.0, 25.0, roll_rate, degr/s,
body, "rate of change of bank angle" }.  This frame
describes a flight variable v22, v22 ≡ pb, which is the roll
rate measured in body reference axes in degrees per
second.  This variable has the code 22 in the vocabulary
V.  It can be depicted as a graphic time-history using the
scale from -25.0 to 25.0 deg/s. 

When planning a flight variable, it is important to remem-
ber about its physical unit and reference frames if appli-
cable. 

FLIGHT EVENT – The flight event, E, is a special state of
the system, which indicates a noticeable change in the
current flight situation. Events are important to the pilot or
an automatic control system as they are used to plan and
modify flight scenarios and control tactics.  Events are
essentially discrete components of the flight situation
model; an event lasts from a fraction of second to one-
two seconds.  A list of flight event examples follows (sub-
scripts stand for event codes): 

{ E1: "situation start”, E3: “speed VR achieved”, E4: 
“pitch 10°”, E6: "altitude 1,200 ft”, E13: "altitude 30 
ft”, E11: “touchdown”, E15: “left wheel off the 
runway”, E17: "left engine out”, E19: “go-around 
decision”, E23: “high AoA”, E90: “situation end”  }. (2)

A flight event is graphically depicted as a circle or ellipse
with the event name and code. 

There are several types of flight events, including: 

• independent and dependent (in the latter case a pre-
condition, or “if-event”, should be checked first)

• simple and compound (determined by the number of
elementary criteria in the event recognition criterion -
see below)

• "precise” and fuzzy (determined by the type of model
variable in the event recognition criterion)

• momentarily recognizable and recognizable with a
delay

• unique and periodical (repetitive), and 

• single and serial. 

Note that these class pairs may have non-empty intersec-
tions. 

The main attribute of a flight event is the recognition crite-
rion, which has the following generic format:

Cr = ((v  R)1 l12 (v  R) l23 (v  R)34 …)
⇒ (E ∈ ΩΑ(E)). (3)

The relationship (3) means that the event E becomes rec-
ognized, or "active", in the model, i.e. E ∈ ΩΑ(E), if the
compound logical condition ((v  R)1 l12 (v  R) l23
(v  R)34 …)  is true.  An example of a compound recog-
nition criterion for the flight event E11: “runway touch-
down” is as follows: Cr =  (H LE 0.0 ft) AND (NZ_MAIN
GT 0.0 kN) AND (CR_DURATION GE 1.5 s]).  It means
that this event is recognized in the model, if: 

• the altitude (H) is less or equal zero, and 

• the vertical load on main wheels (NZ_MAIN) is posi-
tive, and 

• the duration of the true condition for the criterion Cr,
CR_DURATION,  is not less than 1.5 s. 

Another example of a recognition criterion for a com-
pound event E4: "at circuit altitude” is: Cr = (H AE 1200 ft)
AND (Vz BEL [-1.0; 1.0] ft/s), or, in mathematical nota-
tions, Cr = (H ≈ 1200 ft) & (Vz ∈ [-1.0; +1.0] ft/s).  This cri-
terion defines E4, when the altitude is approximately
equal to 1,200 ft and does not change significantly, i.e.
vertical speed remains within 1 ft/s up or down.

In the relationship (3), (v  R)i is an "elementary recog-
nition criterion", which is a condition, which specifies a
certain (i-th) important aspect or component of the event,
i = 1, 2, ….  These elementary criteria (v  R)i are con-
nected by logical links, thus representing the compound
event as a logical composition of its important aspects.
In the elementary criterion (v  R)i, its right part R can
be defined by one of the following two methods: R ≡ a Un
or R ≡ [ a; b  ] Un, where b > a.  For example, R ≡ 300 ft,
or R ≡ [2.0; 10.0] degr. 

A list of events, which may occur in some flight situation
or a group of situations, is called the flight events calen-
dar, Ω(E). The flight event calendar is a discrete frame-
work of a flight situation.  During simulation, each event
from Ω(E) can be in one of the following states: "not rec-
ognized" (NR), "just (or newly) recognized" (JR), "frozen"
(FR), or "recognized (past)" (R). Therefore, 

Ω(E) =   ΩNR(E) ∪ ΩJR(E) ∪ ΩFR(E) ∪ ΩR(E). (4)

Note that a subset ΩA(E), ΩA(E) = ΩJR(E)  ∪ ΩFR(E),
contains events in a currently "active" state.

All events from ΩA(E) are to be specified for modeling.  A
flight event can be defined by a subset of key attributes.
These key attributes are as follows: code, event-precon-
dition ("if-event"), name, list of variables to be memorized
when the event occurs, recognition criterion Cr, delay
(minimum duration of the "true" condition for the criterion
Cr required before the event is considered as "just recog-
nized"), life cycle (for periodic events only), and some
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other.  Thus, a generic frame-specification of a flight
event can be defined as follows:

R[E] =   { i, jIF, Nm, (v1, …, vn), Cr, τ, ∆, ... }. (5)

If an elementary criterion can be used instead of a com-
pound criterion for reliable event recognition, then frame
(5) gets a simpler format:

R[E] =   { i, jIF, Nm, (v1, …, vn), (v R), τ, ∆t, ...}. (6)

For example, specifications of flight events E1, E3, E4,
and E15, which correspond to (6), follow8.  R[E1] = { 1 0
“situation start” (20 77 32 76) (41 GT 0.0 s) 0.0 0.0 },
R[E3] = { 3 1 “speed VR achieved” (3 19 14 1) (77 AE
290.0 km/h) 0.0 0.5 }, R[E4] = { 4 3 “pitch 10 degr.” (77 1
20 3 (14 GE 10.0 degr) 0.0 0.3 }, R[E15] = { 15 3 “left
wheel off r/w” (84 77 14 12) (84 GE 0.0 kN) 0.0 0.5  }.

For example, the last frame R[E15] defines the flight event
E15: "left wheel off the runway", which is a conditional
event depending on the occurrence of the “if-event” E3:
"speed VR achieved".  The event E15 will not be taken for
processing in the model until E3 has occurred.  After that,
the event E15 is included into the subset of events ΩNR(E)
for recognition.  The recognition criterion is simple:
Nz LEFT ≥ 0, where Nz LEFT ≡ v84.  Note that this criterion
must remain true during 0.5 second (τ = 0.5 s) before the
event is recognized.  When E15 is "just recognized", i.e.
E15 ∈ ΩJR(E), the following variables will be memorized
for further analysis: { v84, v77, v14, v8 }, or { Nz LEFT, VIAS,
ϑ, M }. 

Below there are some recommendations for flight event
planning in the model:

• events should capture the physics and logic of sud-
den changes in a flight situation under study

• physical units of variables used in recognition criteria
should be carefully checked

• it is important to remember about logical and physical
dependencies between flight events

• the “if-event” capability should be utilized in order to
make flight scenarios even more robust and generic.

FLIGHT PROCESS – Flight processes are the second
major component of the model after flight events.  The
flight process, Π, can be defined as a time-history of one
or several flight variables, which characterize a certain
continuous aspect of the behavior of the “pilot (automa-
ton) - vehicle - operational environment” system in a
given situation.  Depending on physical background,
flight processes may be divided into four groups: 

• aircraft flight dynamics (longitudinal and lateral
motion9) 

• pilot’s tactical decision making and pilot errors -
“piloting task” (T), system “state observer” (O), “con-
trol procedure” (P), “pre-defined time-history” (H),
and some other

• external operational conditions - “wind” (W), “rain”
(R), “runway surface condition” (Y), etc.

• onboard system functioning and system failures -
“function” (B) and “failure” (F).

Examples of flight processes are as follows: { T2: “keep
pitch at about 10°”, T8: “perform right turn at a 25° bank
angle and zero sideslip”, O6: “observe bank angle and
roll rate”, P5: “flaps - down 0°→30°”, P2: “wheels - up”,
W1: “strong wind shear, accident of 03/06/85”, R2: “tropi-
cal shower of a trapezoid profile with the maximum inten-
sity of 400 mm/hr”, Y3: “wet runway”, B1: “yaw SCAS
operative”, F1: “engine #1 failure”, F19: “rudder hardover
to +25°” }.

Flight processes are used for modeling control tactics
and various operational factors: manual piloting, func-
tions and malfunctions of onboard systems, and weather
conditions.  Each process has a specific purpose in the
logical structure of a flight situation. Unlike flight events,
flight processes are continuous (3-60 seconds long) com-
ponents of flight logic.  A flight process is depicted as an
arrow with its tail emerging from one, "source", event and
the head pointing to another, "target", event - see the
notion of elementary situation below for more detail. 

Note. The level of flight situation formalization by means
of events and processes may vary depending on the
problem.  A criterion for adequate mapping of a flight situ-
ation into a scenario is how realistically and reliably this
scenario reconstructs a particular situation and how sen-
sitive the model is to the input parameters of its events
and processes.

A united list of flight processes can be represented as fol-
lows:

Ω(Π) = Ω(T) ∪ Ω(O) ∪ Ω(P) ∪ Ω(H) …
Ω(B) ∪ Ω(F) ∪ …
Ω(R) ∪ Ω(W) ∪ Ω(Y) … (7)

Flight processes are modeled according to their state
transition automaton, which is similar to the flight event's
state transition logic.  There are four possible states of a
flight process: "not open" (NO), "active" (A), "frozen” (F),
and "closed" (CL), i.e. Ω(Π) = ΩNO(Π) ∪ ΩA(Π) ∪ ΩF(Π)
∪ ΩCL(Π).  "Active" and "frozen” processes constitute a
subset of "open" processes, i.e. ΩO(Π) = ΩA(Π) ∪ ΩF(Π).

ELEMENTARY SITUATION – In the flight situation model,
each process Π normally runs between two events, the
“source” event and the “target” event.  The source event,
E*, opens Π whilst the target event, E*, closes the pro-
cess during flight.  Sometimes, a flight process may not
have a target event associated with it.  In this case, it
means that the process is closed automatically, i.e. when
it reaches its objective.  There may also be several pro-
cesses starting or/and finishing at the same event.  An

8. in frame-specification examples separating commas are 
omitted 

9. in the current version of the situational model, flight 
dynamics type processes are embedded into a flight 
dynamics code of the vehicle
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interrelated triplet s, s = (E*, Π, E*), is called the elemen-
tary situation, like, for example, the triplet (E3, T2, E4) in
the examples above.

Due to heterogeneous physical nature of flight pro-
cesses, input frame-specifications of a flight process
depends on its type.  Main types of flight processes,
which may be useful for accident reconstruction and
"neighborhood" analysis, include: "piloting task", "control
procedure", "failure", "time-history", "wind", "rain", and
some other.  

PILOTING TASK – The piloting task, T, is a flight process
used to formalize manual flight control in the model.  A
piloting task represents some characteristic segment of
pilot's goal-oriented control with feedback.  Piloting tasks
are normally carried out by means of vehicle's primary
controls (elevator, ailerons, rudder, power levers, or
equivalent devices).  It is convenient to formalize a pilot-
ing task based on the type of vehicle motion it controls,
i.e. longitudinal or lateral.  Within each of these two
groups, piloting tasks can be further divided according to
the type of state variable controlled (linear, angular, etc.).
Each piloting task requires measurement (observation) of
current system states (a "state observer” type process -
ref. below) and tactical flight objectives.  The latter repre-
sent desired (goal) states of the system.  Examples of
piloting tasks are as follows: T2: "keep the runway’s cen-
terline”, T4: “maintain pitch angle at about 10°”, T12:
“make a coordinated turn at a 20° bank”, T19: “follow a
bank angle time-history recorded in Flight No. 760 of
07/11/85”.   

A list of piloting tasks, Ω(T), which may be used for mod-
eling manual control tactics in the model, should be spec-
ified.  The following attributes define a piloting task: code,
name, source and target events (i.e. the events, which
will initiate and stop the process, respectively), a vector of
control variables, which implement the task, a priority
level with respect to other processes, time increments for
control input application, and some other. Each piloting
task can be uniformly represented by the following frame
regardless of the type of vehicle motion, tactical objective
and feedback type:

R[Ti] = { i, j(E*), j(E
*), ξ, Nm, (j(u1), …, j(un)), (∆1, 

…, ∆n), ... } (8)

For example, a piloting task T12: “make a coordinated
turn at 20° bank” is defined by the following frame: R[T12]
= { 12 9 28 0 "coordinated turn at 20 degr." (4 10 0 0) (.01
.01 .0 .0) }.  According to (8), this task starts at the event
E9 and ends at E28.  It is implemented by means of two
control variables, aileron and rudder, i.e. (v4, v10) ≡ (χ, ζ).
The frequency10 for updating the control vector (v4, v10)
in T12 is 100 Hz, i.e. (∆1, ∆2) = (0.01, 0.01).

The "event-process" flight formalization language pro-
vides a powerful means for modeling flight control tactics

on the cause and effect level.  This allows automated and
flexible planning and execution of flight simulation experi-
ments by a non-pilot user.  

The following hints may be useful in piloting task model-
ing: 

• potential conflicts between tasks and other pro-
cesses should be avoided though a conflict is
detected automatically

• the flight situation model provides an opportunity for
flexible virtual testing of various piloting methods,
which cannot be checked in actual flight (ref. the
example T19 in the task list above).

STATE OBSERVER – The system state observer (O) is a
process of evaluation of the current state of the system
and comparing these states with a desired state (tactical
objective).  Each state observer consists of several ele-
mentary observers, i.e.: 

Ok =   (O1
k, …, Oi

k, …, On(O)
k). (9)

The goal of system state observation is to detect an error
between these two states sufficient to change the piloting
task associated with the observer.  For example, a pilot-
ing task T1: “hold roll and sideslip angles at zero“, which
is performed by means of ailerons and rudder, requires
two state “observers” to monitor the vehicle’s bank and
sideslip motion, O1 and O2.  The first observer, O1 =
(O1

1, O2
1, O3

1), or O1 = (O1
1: “Roll observation”, O2

1:
“Roll rate observation”, O3

1: “Roll acceleration observa-
tion”), is designed for aileron control.  The second
observer, O2 = (O1

2, O2
2, O3

2), or O2 = (O1
2: “Sideslip

observation”, O2
2: “Sideslip rate observation”, O3

2: “Side-
slip acceleration observation”), is used in rudder control.  

ELEMENTARY OBSERVER – The elementary observer,
Oi

k, is the i-th component of the vector Ok in (9); it speci-
fies the observation process along one state variable.
Oi

k is used to measure errors between the current and
desired (goal) values of that variable.  In the examples
above, each of the two observers (O1 and O2) consists of
three elementary observers, which respectively measure
angular attitudes, angular rates and angular accelera-
tions. 

The input specification of an elementary observer has the
following format11:

R[Oi
k] = {  j(T), j(u), j(x), Nm(x), [G], k, x1, x2, ∆o, 

… }, (10)

where 

• j(T)  is the code of a piloting task T, which employs
the elementary observer Oi

k, T∈Ω(T); j(T) ∈ {1, 2, …}
∪ {0}. 

10. for a fuzzy or neural network control model a set of task's 
attributes will be slightly different 

11. this specification is applicable to the proportional-integral 
type of feedback; for neural network or fuzzy control mod-
els the specifications will differ 
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• j(u)  is the code of the control variable u, for which Oi
k

supplies state error information, u ∈ (u1, …, un) ∪ {0}
and j(u) ∈ (j(u1), …, j(un)), (j(u1), …, j(un)) ∈ R[T]

• j(x) and Nm(x) are, respectively, the code of the
observed state variable x, x ∈ V

• [G]  is the description of a goal state for the variable
x:, which may be specified in two ways: (1) G ∈ ℜ or
(2) G ≡ j(H), where j(H) is a pointer to a time-history
type process H (see the definition of the H type pro-
cess below)

• k  is the gain coefficient used to account for observa-
tion errors ε(t), ε(t) = x(t) - G, in the feedback
model12, which represents the pilot's perceptual-
motor function, u(t) = f (k; ε(t); …) 

• x1 and x2  are thresholds of the observation insensi-
tivity zone, x1 < x2;  x1, x2 ∈ ℜ

• ∆o  is the observation step (seconds), ∆o > 0.

In the frame (10), if j(T) = 0, then the "elementary
observer" Oi

k will be used by any piloting task T, T∈Ω(T),
which has the control variable u, j(u) ∈ R[Oi

k].  Also, if j(u)
= 0 in (10), then Oi

k will be automatically applied to any
control variable u, u ∈ (u1, …, un), within the task T.

Examples of elementary observers constituting O1 and
O2 are as follows: R[O1

1] = { 1 4 12 RollObs [-2.0] 0.5 0.1
0.3 0.005 },  R[O2

1] = { 0 4 28 RollRateObs [0.0] 0.5 0.0
0.0  0.005 }, R[O1

2] = { 1 10 11 SideslipObs [9.0] -0.5 0.2
0.5 0.05 }, R[O3

2]  = { 0 10 150 YawAccelObs [0.0] 0.5 0.0
0.0 0.005 }.

For example, the frame R[O1
2] describes the elementary

observer O1
2: “Sideslip observation”, which is used to

monitor the sideslip variable, x ≡ v11 ≡ β, for the piloting
task T1.  The goal sideslip angle of 9.0° is pursued by
means of rudder, u ≡ v10 ≡ ζ.  Observation errors εβ(t),
εβ(t) = β(t) - 9.0°, are accounted for in the feedback model
ζ = f(k; εβ(t); …) with a 20 Hz frequency (∆o = 0.05 s) and
gain k of -0.5 according to the following rule.  

The elementary observer O1
2 is switched "on", i.e. εβ(t) =

β(t)-G, beginning from a time instant ti, when |εβ(ti)| > x2
and |εβ(ti-∆o)| ≤ x2, and until |εβ(tj)| > x1 and |εβ(tj-∆o)| ≤
x1, where x1 = 0.2° and x2 = 0.5°.  Otherwise (O1

2 is
switched "off"), εβ(t) = 0.  

This condition means that sideslip errors are taken into
account in rudder control, if the accuracy of maintaining
the required sideslip angle (9°) exceeds the threshold of
the first insensitivity zone (±0.5°).  If, after this, the error
εβ(t) is reduced to the threshold of the second zone
(±0.2°), εβ(t) is set to zero until the first threshold (±0.5°)
has been violated again, etc. 

When selecting state observers for piloting tasks, the fol-
lowing recommendations are useful: 

• the choice of proper coordinate systems for observed
state variables is essential (e.g.: body vs. earth
frames)

• the number of elementary observers in an observer
is within  the range of 2 to 4 

• |k| ∈ [0.1; 1.0] for majority of conventional aircraft
types and flight missions13.  

CONTROL PROCEDURE – The use of secondary con-
trols (flaps, spoilers, etc.), as well as single inputs by pri-
mary controls and other discrete type control actions, are
described in the model by the process type called the
control procedure, P.  For example, P1: “wheels - up”, P2:
“unstick”, P3: ”retract flaps up from 30° to 15°”, P4: “move
engine throttles to MCPR”, etc.  Each control procedure
can be uniformly described by the following attributes:
code, name, vector of control variables, source and target
events, objective, and some other parameters.  A unified
frame-specification of a control procedure has the follow-
ing format:

R[Pi] = { i, j(E*), j(E
*), ξ, Nm, m, (j(u1), …, j(u4)),

[G], τ, kdu/dt, … }. (11)

In the frame (11), the attribute ξ is the priority level of the
control procedure Pi among other control processes.  For
example, this attribute can be used to resolve conflicts
between two open processes (e.g.: Pi and Pj from
ΩO(P)), which share the same control variables, i.e.: (u1,
…, u4)|Pi ∩ (u1, …, u4)|Pj ≠ ∅).  Then a process (e.g.: Pi),
which has a higher priority level, will be taken for execu-
tion in the model, i.e. (ξ|Pi > ξ|Pj) ⇒ (Pi ∈ ΩA(P) & Pj ∈
ΩF(P)). 

Another important attribute in (11) is the method of defin-
ing the control objective in Pi, m.  If m = REL, then the
objective value of (u1, …, u4) in Pi is defined as G plus
the current value of (u1, …, u4) when Pi is just started
(relative specification of G).  If m = ABS, then the objec-
tive for (u1, …, u4) is set to G (absolute specification).  

There is also a special type of control procedures for
maintaining a required airspeed profile by throttles (m =
THR). The coefficient kdu/dt is used to modify the stan-
dard rate of change of the variables (u1, …, u4): du/dt =
kdu/dt (du/dt)S. 

Examples of control procedure specifications are: R[P1] =
{ 1 3 0 1 “elevator up by –8 deg.” REL (3 0 0 0) -8.0 0.0
0.5 }, R[P2] = { 2 13 0 0 “wheels up” ABS (89 0 0 0) 0.0
0.5 1.0 }, R[P3] = { 3 18 0 0 “flap 8-->4 deg.” ABS (25 0 0
0) 4.0 0.0 1.0 }.  For example, R[P2] describes the control
procedure P2: “wheels – up” implemented by means of
the variable v89, v89 ≡ kLG (undercarriage control), begin-
ning from the event E13: “altitude 30 ft”.  The goal is to
retract the undercarriage (kLG = 0).  This procedure starts
0.5 s after the event E13 has been recognized.  The rate
of undercarriage retraction is standard (kdu/dt = 1.0).
Note that the target event for P2 is not specified: the pro-
cedure terminates automatically when kLG = 0.

ONBOARD SYSTEM FAILURE – The onboard system
failure (F) is a process, which imitates abnormal function-

12.  in the proportional-integral or similar feedback type 13.  proportional-integral type of feedback
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ing of an onboard system. Examples are F2: “left engine
failure”, F8: “uncommanded deployment of thrust
reverser”, F27: “rudder hardover to +25°”.  In the model,
system failures are specified as artificial control proce-
dures (see the definition above).  Thus, the frame-specifi-
cation of an onboard system failure is similar to R[Pi]:

R[Fi] = { i, j(E*), j(E
*), ξ, Nm, m, (j(u1), …, j(u4)), 

[G], τ, kdu/dt, … }. (12)

The differences between attributes in (11) and (12) are
as follows: 

• the “control” vector (u1, …, u4) represents a variable,
which models an onboard subsystem’s failure

• the “goal” G is the value of (u1, …, u4), which corre-
sponds to a degraded performance of the subsystem

• the rate adjustment factor kdu/dt is used to model
abrupt (kdu/dt > 1…5) or slowed down (0 ≥ kdu/dt > 1)
changes of the “control” variable. 

Two examples of failures are presented below: R[F5] = { 5
4 0 0 “engine#4 out” ABS (66 0 0 0) 5.0 0.0 1.9 }, R[F6] =
{ 6 27 0 0 “flap jam” ABS (25 0 0 0) 0.0 0.0 7.0 }.  For
example, R[F5] describes the failure F5: “engine#4 out”,
which occurs at the event E4: “pitch 10°”.  This engine
failure is modeled as an artificial control procedure per-
formed by means of throttle #4 (v66 ≡ δTHR.4).  The goal
value of v66 is 5% (the autorotation level of r.p.m.  Note
that during this engine failure, the rate of r.p.m. decline is
1.9 times faster than a normal r.p.m. deceleration rate
after fuel cutoff.

RAIN-TYPE PROCESS – The rain-type process (R) is
used to model effects of rain on the vehicle aerodynamics
and flight dynamics.  The following effects can be mod-
eled: increased roughness and waviness of the wing and
fuselage surfaces due to rain, as well as dynamic effects
of rain drops on the vehicle. Corresponding increments in
the lift and drag force and pitching moment coefficients
(∆CLrain, ∆CDrain, and ∆CMrain) can be calculated as a
function of the rain intensity J [mm/hr].  The underlying
mathematical model of rain describes various rain condi-
tions, ranging from “light rain” (with a minimum intensity J
= 50 mm/h) up to “heavy tropical shower” (J ∈ [200; 500]
mm/h). An example of the rain type process is R1: “heavy
rain of a 250 mm/h intensity; visibility 1,500 ft”.

A list of attributes of a rain type process (rain profile)
includes: code, name, codes of source and target events,
name of the lookup table, which contains rain data, code
of the variable-argument in the lookup table, first and last
rows from the table, which contain rain intensity data for
modeling, and some other parameters.  A generic frame-
specification of a rain-type process is as follows:

R[Ri] = { i, Nm, j(E*), j(E∗), (RT, xarg, r*, r
*, n), ∆J, 

… }, (13)

where J(t) = JT(xarg) + ∆J is the current rain intensity and
RT is the code xxx of a lookup table-file gxxx, which con-
tains the rain profile data in the form { (JT, xarg)1, …,
(JT, xarg)n }. 

For example, the rain-type process R1: “trapezoid rain
profile of 200 mm/h” can be described by the following
frame: R[R1] = { 1 “trapezoid rain profile 200 mm/h” 1 90
(961 41 36 42 7) –50.0 }.  This specification defines a
heavy rain process J = f(t) of a trapezoid profile running
between events E1: “situation start” and E90: “situation
stop” with the maximum intensity of 200 mm/h, where t ≡
v41.  This profile is loaded from the lookup table-file g961,
rows 36-42, i.e. { (JT, t)1, …, (JT, t)7 }.  The rain intensity
profile is modeled as J(t) = JT(t) - 50. 

The structure of the lookup table containing rain intensity
data is as follows:

R[RT] = { …,
(xarg, Iarg)1,
(xarg, Iarg)2, 
…, 
(xarg, Iarg)n, 
… }, (14)

An example of Frame (14) corresponding to R1 is as fol-
lows:

Some useful hints for planning rain type processes are:

• the argument of a rain profile must be a monotonous
variable, such as time, distance, altitude (at climb or
descent) or other

• the effect of heavy rain on aircraft aerodynamics can
be essential (a 3-12% negative effect on the aerody-
namic lift and drag coefficients).

WIND-TYPE PROCESS – The wind-type process type
(W) is used to model various non-stochastic wind effects
on the vehicle dynamics and flight control.  This process
type belongs to the group of external operational condi-
tions.  The following wind effects can be modeled: gusts,
wind shear, “microburst”, cross wind, head wind, tail
wind, and any other 1-, 2-, and 3-dimensional symmetric
and asymmetric (with respect to body frames) wind pro-
files.  Examples of wind processes are W1: "strong wind
shear of 14 ft/s per 90ft of altitude” and W5: “3D
microburst field”.

Each wind process is described by means of a generic
frame-specification similar to (13):

R[Wi] = { i, Nm, j(E*), j(E∗), (WT, xarg, r*, r
*, n),

…. }. (15)

For example, the frame R[W1], R[W1] = { 1 “windshear
14ft/s per 90ft H” 1 90 (950 41 1 10 10) }, specifies the
wind-type process W1, which runs in the model between
the events E1 and E90.  The wind speed components,

r* 0.0 0.0
r*+1 5.0 50.0
r*+2 10.0 200.0

… … …
r*+n-2 30.0 200.0
r*+n-1 150.0 0.0
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Wxg, Wyg, Wzg = f(t) are read from a lookup table WT, WT
≡ g950, rows 1-10, where t ≡ xarg ≡ v41.  The structure of
a lookup table WT containing wind data is similar to (14):

R[RT] = { …,
(xarg, Wxg, Wzg, Wyg)1,
(xarg, Wxg, Wzg, Wyg)2, 
…, 
(xarg, Wxg, Wzg, Wyg)n,
… }, (16)

Example: 

TIME-HISTORY – The time history type process (H) is a
specially arranged lookup table or a graph of numeric val-
ues of a flight variable as a function of time, H = f(t).
Time-histories are used as a generic means to represent
and simulate real, hypothetical or mixed flight data in a
flight scenario.  Examples are as follows. H1: “pitch angle
time-history, accident, dd/mm/yy”, H5: “throttles ##1-4
control record from landing of dd/mm/yy”, H14: “aileron
pulses, en-route mode, 50 s”, etc.  Experience of previ-
ous applications demonstrates that practically any flight
accident, flight test or certification program can be recon-
structed in the model using this type of flight processes.
The frame-specification of a time-history has the follow-
ing format:

R[Hi] = { i, (j(x1), ..., j(xn)), Nm, ξ, j(E*), j(E
*), (HT, 

r*, r
*, n), ∆t, ∆x, … }, (17)

where (j(x1), ..., j(xn)) is the vector of codes of flight vari-
ables, which implement the time history, x = (x1, ..., xn),
and ∆t is the time step in the lookup table HT, ∆t > 0; x(t)
= xT(t) +∆x.  The lookup table has the following simple for-
mat:

R[HT] = { xT[1], …, xT[10], 
xT[11], …, xT[20], 
…, xT[n] }, (18)

where xT[k] is the k-th value from the lookup table HT,
k = 1, …, n.  

Two examples of time-history specification frames R[Hi]
are shown below.  R[H3] = { 3 (235 0 0 0) NX_exp. 0 1 20
(843 143 213 631) 0.5 0.0 }, R[H4] = { 4 (214 0 0 0)
pitch_exp. 0 1 20 (843 214 284 631) 0.5 0.0 }.  The frame
R[H3] specifies a time-history H3, nx = f(t), nx ≡ v235,
which is modeled between the events E1 and E20.
Recorded (“experimental”) values of the longitudinal
acceleration variable (nx) are stored in the table HT ≡
g843, rows 143 - 213, with the time increment ∆t = 0.5s
(the total number of nodes is 631).  

FLIGHT SITUATION SCENARIO  –  The flight situation
scenario (flight scenario), S, is a plan for implementing
the content of a flight situation and associated piloting
tactics in simulation or operation.  Flight scenarios are
formed of two types of objects - “flight events” and “flight
processes”, which represent, respectively, discrete and
continuous components of flight.  A flight scenario may
be depicted as a directed graph: S = Ω(E) ∪ Ω(Π).  Its
vertices (flight events), Ω(E), and directed arcs (pro-
cesses), Ω(Π), are linked together forming a logical
cause-and-effect model of the situation under study.
Note that a flight scenario may be viewed as a union of its
elementary situations.  Flight scenarios capture cause-
and-effect and other key relationships between discrete
and continuous elements of flight, thus mapping its invari-
ant structure.  

Fig. 1  depicts a realistic flight scenario of an accident
with a transport airplane, titled S0: “Takeoff under
microburst conditions” [4]. 

Other examples are as follows: S2: “normal takeoff”, S4:
“aborted landing”, S6: ”level flight at 450 knots and 10 km
of altitude”, S7: “coordinated turn at 15° bank”, S10: “stall
in takeoff configuration”.

Following are a few recommendations on flight scenario
planning:

r* 0.0 0.0 0.0 0.0
r*+1 10.0 -10.0 -0.5 0.0
r*+2 15.0 -12.0 -2.0 0.0

… … … … …
r*+n-2 39.5 3.0 -1.0 0.0
r*+n-1 80.0 2.5 0.0 0.0

AoA ~ 6o

AoA ~ 10o

altitude ~10.7 m

altitude ~56 m

time 60 s

1

2

7

71

8

21

15

5

TASK

T1 : “steer runway’s centerline
by rudder”

PROCEDURE
• • •

TASK

T4 : “keep bank and sideslip at zero
by ailerons & rudder”

P3 : “elevator - down
by 6.5o”

PROCEDURE

TASK

P1 : “wheels - up”

PROCEDURE

P4 : “flaps - up”

PROCEDURE

P5 : “rebalance
stabilizer”

PROCEDURE
• • •

RAINWIND

• • •

• • •

• • •

speed VR

P2 : “elevator - up
by -5.7o”

nose wheel -
off runway

groundroll start

W1 : “wind profile
of xx/xx/xx”

R1 : “rain profile
(maximum intensity

of 225 mm/h)”

T3 : “steer actual pitch
time-history by elevator”

Legend:

altitude ~56 m 21

Flight event
(e.g.: E21: “altitude ~56 m”)

P1 : “wheels-up”
- “control procedure”

T4 : “keep bank …”
- “piloting task”

W1 : “wind profile …”
- “wind” type process

R1 : “rain profile …”
- “rain” type process

Flight processes

Figure 1: Flight accident scenario S0: “Takeoff
under microburst conditions” [4]
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• the reliability of flight simulation results largely
depends on the fidelity of mapping of the actual
events and processes into sets Ω(E) and Ω(Π), i.e.
the user’s piloting tactics is implemented

• the flight dynamics model (aerodynamic and other
input characteristics) must cover the sub-domain of
flight modes under study

• it is important to remember about the underlying
assumptions and limitations of the physical model of
flight.

The frame-specification of a flight scenario is as follows:

R[Si] =    { Ω(v), Ω(E), Ω(Π), … }. (19)

In programming terms, the set (19) is a table with refer-
ences (names gxxx) to the data files, which contain
frame-specifications of events and processes of the flight
situation under study.

AUTONOMOUS FLIGHT SITUATION MODEL   –  The
autonomous flight situation model (M) is a system of
algorithms and data structures, which emulates the
behavior of the ‘pilot – vehicle – operational environment’
system in a complex flight situation.  A formal relationship
for executing a flight scenario in autonomous simulation
can be defined as follows: 

(∀S) (S = Ω(E) ∪ Ω(Π)) (∃s) (s` = (Ei, Ek, Πj) 
(((Ei ∈ ΩP(E) ∧ Ek ∉ ΩP(E) ∧ Πj ∉ ΩCL(Π)) ∧ (t ≥ 
t[Ei ∈ ΩP(E)] + τ)) ⇒ Πj ∈ ΩA(Π)) ∨ ((Ek ∈ ΩP(E) 
⇒ Πj ∈ ΩCL(Π)), (20)

where τ is a delay in event recognition.  The relationship
(20), together with the flight event processor and models
of flight processes, constitute a generic computational
algorithm of M.

MODEL BASED FLIGHT ACCIDENT ANALYSIS 
PROCESS 

In this section, main steps of the model based flight acci-
dent analysis process are briefly described.  Each step is
named after the main objects under processing during
this step (ref. object descriptions in the previous section
and [1, 4-6]).  An example of complex flight accident anal-
ysis is described in [4].

1. SOURCE DATA - Collect and analyze source data of
the accident from aircraft's flight recorder, radar
tapes, cockpit voice recorder, and other accident
materials, etc. Select a segment of the flight path for
modeling. 

2. WORK HYPOTHESES - Define work hypotheses
concerning probable causes and key operational fac-
tors of the flight accident. Give a concise formulation
of the accident analysis problem.

3. INPUT DATA FILES - Process source data on the
flight accident.  Prepare a file containing flight
recorder data in the “time-history” format. 

4. FLIGHT VARIABLES - Select a vector of key model
variables for quantitative analysis. Define graphic and
tabular output forms for these variables. 

5. EXPERIMENTATION PLAN - Plan flight simulation
experiments with the model.  To do this, compile a list
of main flight scenarios and their modifications
(derivative scenarios) for checking the work hypothe-
ses. 

6. MAIN FLIGHT SCENARIO - Develop the main flight
scenario(s). Create the derivative scenarios by modi-
fying the following components of the main scenario:
“flight events”, “piloting tasks”, “state observers”,
“control procedures", "system failures”, and “time-his-
tories”.  Tune the model to the flight mode under
examination. 

7. OPERATIONAL CONDITIONS (FACTORS) - If re-
quired, identify operational conditions (weather,
onboard system malfunctions and errors, etc.) of the
accident by applying the direct flight simulation and
inverse flight dynamics techniques.

8. ACCIDENT RECONSTRUCTION - Reconstruct the
flight accident situation using the autonomous flight
model. Graphically compare simulated and real data
of the flight accident. Evaluate the model's accuracy
under given operational conditions [4]. 

9. "CHAIN REACTION" MECHANISM - Identify main
components (events and processes) of a "chain reac-
tion" (cause-and-effect) mechanism of the flight acci-
dent. Depict this mechanism in a graphic format [4]. 

10. SITUATIONAL TREE - Provided that the actual and
modeled flight paths are close enough, simulate
"neighboring" situations to check the work hypothe-
ses using the derivative scenarios.  Construct (draw)
a situational tree of the accident's "neighborhood"
(accident sub-domain tree). Analyze the vehicle's
energy status, transformation and management in all
situations from the accident domain. An example of a
situational tree, which is constructed based on the
flight accident scenario S0 and derivative scenarios
(Fig. 1 ), is shown in Fig. 2 . (ref. [4] for more detail). 

11. FUZZY FLIGHT CONSTRAINTS - Specify all fuzzy
flight constraints applicable to this accident case.
Check the compliance of the system states with the
operational constraints for all the situations from the
accident tree.  Detect variables violating these con-
straints.  Identify and depict a mechanism of flight
constraint violation dynamics. Calculate the complex-
ity and safety metrics of the flight accident sub-
domain under examination. 

12. FLIGHT SAFETY SPECTRA - Specify flight safety
colors, e.g.: "green", "amber", "red", and "black" [4].
Calculate and draw flight safety spectra for each of
the flight path-branches from the situational tree. 
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13. SAFE AND UNSAFE FLIGHT DOMAINS - Group,
depict and compare simulated flight path-branches
from the situational tree along 2 to 5 key flight vari-
ables.  Conduct qualitative and quantitative analysis
of the safety status of the accident domain using
results from Steps 7-12: identify subsets of unsafe
(catastrophic) flight paths and, if possible, safe
(recovery) flight paths.  Determine reliable criteria for
early recognition (in flight) of "chain reaction" condi-
tions of the given and derivative (neighboring) acci-
dent patterns.  Identify recognition criteria for safe
recovery situations if any.

14. CONCLUSIONS AND RECOMMENDATIONS -
Derive conclusions from the conducted simulation
experiments. State main assumptions and limitations
of the analysis.  List key contributing operational con-
ditions (factors) and their interrelationships. Formu-
late the likely causes of the accident. Summarize
findings from Steps 7-12, including energy manage-
ment, constraints violation dynamics, flight safety
spectra, etc.  Recommend possible recovery tactics,
etc. 

15. FINAL REPORT – Prepare a final report with findings
and conclusions of the analysis.  Propose remedial
measures, which would be required to reduce the
chances of future occurrences of similar accident
patterns.  These measures may relate to aircraft
piloting tactics, pilot training, situational awareness,
vehicle and system design, and other issues. Also
propose how to improve the vehicle flight dynamics
model (aerodynamics, engine characteristics, etc.)
and an onboard flight data recording system.

CONCLUSIONS

Complex flight situations, including accidents and inci-
dents, can be formalized by compact data structures in
the form of scenarios. The complexity of the flight acci-
dent scenario planning and simulation task does not
grow with the complexity of the accident.  The autono-
mous flight situation model can be used as a virtual test
article to study complex dynamics of the “pilot (automa-
ton) – vehicle – operational environment” system in a
flight accident.  The concept of flight scenarios helps to
better understand and manage, during simulation experi-
ments with the model, physical and logical interrelation-
ships, which determine the system dynamics in an
emergency.  

Using this method, key operational factors of flight, as
well as extreme or unusual combinations of these factors,
which may lead to a “chain reaction” flight accident, can
be formalized, quantified and evaluated in detail. A much
higher speed and quality of flight accident investigation
can be achieved with a simultaneous increase in the
amount and quality of knowledge of a complex flight acci-
dent domain. Piloting and programming skills are not
mandatory for the user.  
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Figure 2: A situational tree of the flight accident
and its “neighborhood” [4]
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NOMENCLATURE

ℜ Set of real numbers
ϑ Pitch angle
χ Aileron
ζ Rudder 
η Elevator 

εβ(t) Sideslip observation error at t
ε(t) Observation error at time instant t
β(t) Sideslip angle at time instant t

∆CDrain Drag coefficient increment due to rain
∆CLrain Lift coefficient increment due to rain 
∆CMrain Pitching moment coefficient increment due to rain
(du/dt)S Standard rate of change of control variable u

δTHR.4 Engine #4 control lever
[G] Description of tactical objective 

a Real number, a ∈ ℜ
A “Active” state of flight event

AE "Approximately equal" relation type (≈ or ≅)
AND, ∧, & Logical link "and" 

AoA Angle of attack
b Real number, b ∈ ℜ
B “Onboard system function" type process 

BEL "Belongs" relation type (∈)
Cr Flight event recognition criterion

Def Definition 
E Flight event

E* Source flight event
E* Target flight event
E0 Euler parameter, e0 ∈ { e0, e1, e2, e3 } 

EQ "Equal" relation type (=)
F “Onboard system failure" type process

f(…) Function of … 
FR “Frozen” state of flight event
GE "Greater or equal than" relation type (≥)
GT "Greater than" relation type (>)

H “Time-history” type process
i, j Numeric code of a model's object, i, j∈ {1, 2, … }

IAS Indicated airspeed
ij Pair code, ij ∈ {12, 23, 34, ...} 
J Rain intensity, mm/h

j(E*) Source event code, E* ∈ Ω(E) 
j(E*) Target event code, E* ∈ Ω(E) 
j(H) Pointer to a “time-history” type process
j(T) Piloting task code in "elementary observer"
J(t) Current rain intensity, mm/h
j(u) Control variable code  

j(u1), …,
j(un)

Codes of variables used in a control  process, uk ∈ V 
and k ∈ { 1, ..., 4 }

j(x) Code of state variable in elementary observer, x ∈ V 
jIF "If-event" (event precondition)

JR “Just recognized” state of flight event
JT Rain intensity profile data (from RT), mm/h

JT(xarg) Rain intensity from the table RT at t, mm/h
k Gain 

kdu/dt Adjustment factor for the rate of change of control 
variable u, u` = u`nom kdu/dt

kLG Undercarriage on/off control variable, kLG ∈ [ 0; 1]
LE "Less or equal" relation type (≤)

lij Logical link between elementary recognition criteria, 
lij ∈ { OR; AND }

LT "Less than" relation type (<)
M Mach number
m Mode (REL or ABS)

MCPR Maximum continuous power rating
n Total number of nodes in a rain or wind profile

N(…) Number of elements in set … 
NA "Approximately not equal" relation type (¬≅)
NE "Not equal" relation type (≠)
Nm Object name or identifier 

Nm(x) Name of flight state variable x in "elementary 
observer"

NR “Not recognized” state of flight event
Nz LEFT Vertical reaction on the left undercarriage strut

O, Ok System state "observer", Ok = (O1
k, …, Oi

k, …, On
k)

Oi
k Elementary "observer", Oi

k ∈ (O1
k, …, On

k)
OR, ∨ Logical link "or" 

P “Control procedure" type process
pb Roll rate (body frames)
R “Recognized” (past) state of flight event
R Right part of the recognition criterion, R ≡ a Un, or R 

≡ [ a; b ] Un; b > a
R "Rain" type process
r* Number of the first row in a lookup table-file
r* Number of the last data row in a lookup table-file

R[…] Input frame-specification of object …
RT Name of a lookup table-file with rain data, RT ≡ gxxx 

S Elementary flight situation
Sys Coordinate system (frames of reference)

T "Piloting task" type process
t, tj Time 

TAS True airspeed
u Flight control vector

u` Rate of change of variable u
u`nom Nominal rate of change for control variable u

ui Flight control variable, ui ∈ u
Un Physical measurement unit 

V Vocabulary of flight variables

v  R Elementary recognition criterion for a flight event

v1, …, vn List of variables for memorization when flight event 
occurs, vi ∈ V

vi, v Generic flight variable, v, vi ∈ V
VIAS Indicated airspeed 
vmax Upper graphic limit of variable v
vmin Lower graphic limit of variable v

Vz Vertical speed
w Vector of external flight conditions 
W "Wind" type process
wi External condition variable, wi ∈ w

WT Name of a lookup table-file containing wind profile's 
data, WT ≡ gxxx

x Flight dynamics vector
x1 Threshold of observation insensitivity zone (observer 

“off”), x1 ∈ ℜ 
x2 Threshold of observation insensitivity zone (observer 

“on”), x2 ∈ ℜ 
xarg Code of lookup table argument 

xi Flight dynamics variable, xi ∈ x
Y "Runway surface condition" type process

 ΩNR(E) Subset of "not recognized" events
∆1, …, ∆n Time steps for control inputs  application (in a piloting 

task)
∆i Time step for control input increments, s

∆J Rain profile shift, mm/h
∆o Time step for system state observation, s
∆t Event's life cycle (for periodic events ∆t > 0) 

Ω(B) List of onboard system "functions" 
Ω(E) Flight events calendar
Ω(F) List of onboard system "failures"
Ω(H) List of “time-histories” 
Ω(O) List of elementary "state observers" 
Ω(P) List of "control procedures"
Ω(R) List of "rain" type processes
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Ω(T) List of "piloting tasks"
Ω(W) List of "wind" type processes
Ω(Y) List of "runway condition" type processes
Ω(Π) United list of flight processes

ΩA(E) Subset of currently "active" events
ΩA(Π) Subset of "open" processes

ΩCL(Π) Subset of "closed” processes
ΩF(Π) Subset of "frozen" (temporarily inactive) processes

ΩFR(E) Subset of "frozen" events
ΩJR(E) Subset of "just (or newly) recognized" events

ΩNO(Π) Subset of “not open” processes
ΩO(Π) Subset of "open” processes
ΩR(E) Subset of "recognized" (past) events

Relation in the criterion for flight event recognition, 
 ∈ { GT, LT, EQ, BEL, GE, LE, NE, AE, NA, … }

τ Delay (in flight event recognition, or control process 
initialization), τ ≥ 0 

ξ Process priority level used when Π ∈ ΩA(Π); ξ ∈ { 0, 
... , 99 } 

⇒ Implication
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