SAE Advances in Aviation Safety Conference and Exposition April 11-13, 2000, Adam's Mark Hotel, Daytona Beach, Florida

Virtual Flight Testing of an Experimental Tilt-Rotor Aircraft under Complex (Multi-Factor) Operational Conditions - A Case Study

Ivan Y. Burdun

Daniel P. Schrage

ivan.burdun@aerospace.gatech.edu daniel.schrage@aerospace.gatech.edu

Georgia Institute of Technology

– Presentation Plan

- Problem: tilt-rotor flight safety and control tactics under complex (multi-factor) conditions
- Solution approach: virtual flight testing in autonomous modeling and simulation
- Flight situation/case under study
- Modeling and simulation results. Discussion.

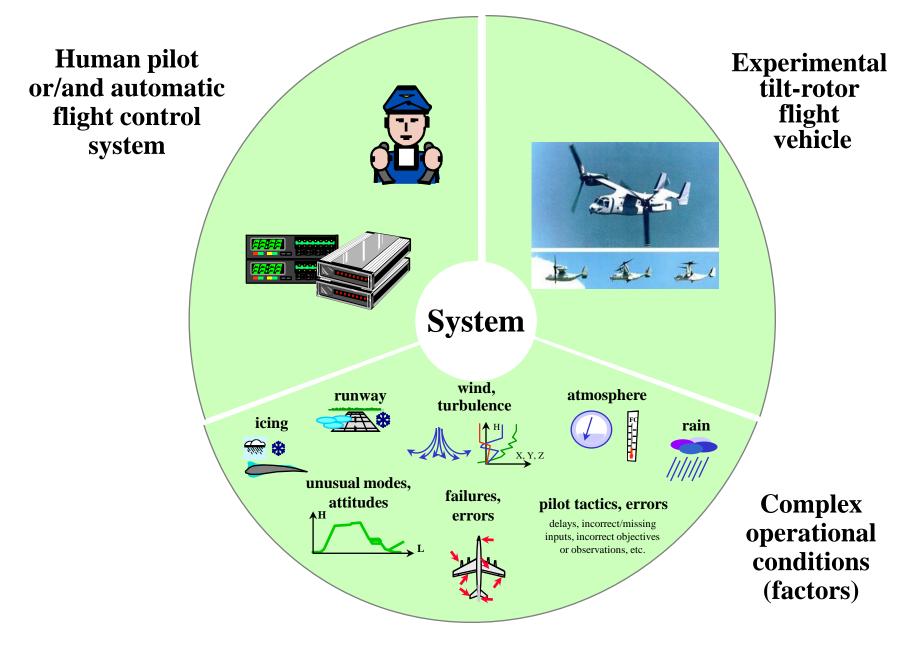
Conclusions

– Problem. Solution Approach. Objective

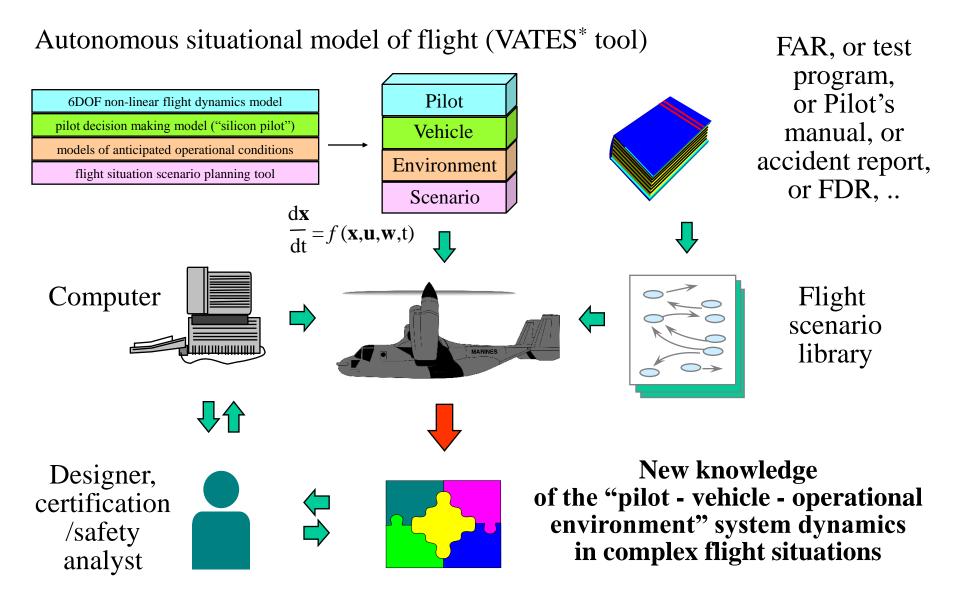
Problem

How to test and evaluate "pilot-vehicle-environment" system dynamics under complex (multi-factor) operational conditions? Specific problem: XV-15 autorotation landing with two engines out

Solution approach


Virtual flight test experiments using autonomous modeling and simulation

Objective


- Examine vehicle flight performance and control tactics under complex conditions
- Assess sensitivity of the system dynamics to contributing operational factors
- Propose recovery control scenario

\Rightarrow Complement flight test and manned simulations

System Under Examination

Virtual Flight Test Technique

Note: * VATES - Virtual Autonomous Test and Evaluation Simulator (proprietary software)

Flight Test and Manned Simulation Vs. Autonomous Modeling and Simulation

Comparison criterion	flight tests	manned simulation	
 study of complex (extreme) operational conditions 	NO	YES*	YES*
 systematic exploration of flight domains 	NO	NO	YES
 inexpensiveness to establish and run 	NO	NO	YES
 careful evaluation of combined and "thin" effects 	NO	NO	YES*
 broad use in aerospace research & education 	NO	NO	YES
 accuracy and fidelity of results 	YES	YES*	YES*
 "what-if" experimentation capability 	NO	YES**	YES
• autonomy and independence (of test pilot/equipment)	NO	NO	YES
 preservation and automation of flight scenarios 	NO	YES**	YES
 faster-than-real-time performance of flight 	NO	NO	YES
 safety of experimentation 	YES*	* YES	YES
 suitability for pilot training 	YES*	* YES	YES**

Note: (*) depends on the comprehensiveness and fidelity of flight dynamics model (**) limited capability

Assumptions and Limitations. Disclaimer

Assumptions and limitations

- 1. GTRSIM-based (1988) flight dynamics and control model of XV-15 tilt-rotorcraft, including vehicle-ground aerodynamic interaction
- 2. Vehicle undercarriage kinematics and dynamics not modeled though possible \Rightarrow Load factor at vehicle-ground contact point not modeled
- 3. Discrete-continuous model of human pilot situational/tactical decision making
- 4. Only longitudinal motion studied (though full flight dynamics implemented)
- 5. Non-systematic series of experiments (limited by one flight case) \Rightarrow Statistical experiments should and can be conducted in the future
- 7. Flight analysis based on knowledge mapping formats not performed

Disclaimer

- 1. Results obtained at this stage are for demonstration purposes only. They are applicable to a model, not to the actual vehicle
- 2. Material does not contain piloting recommendations for immediate use in operation
- 3. Proprietary flight modeling and simulation tool VATES used

Virtual Flight Test and Evaluation Process*

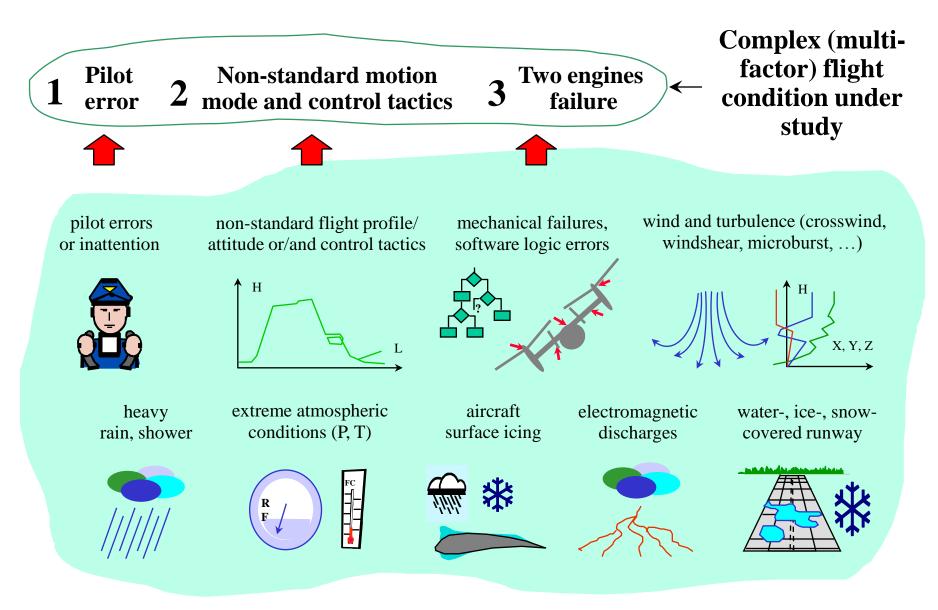
- 1. Obtain verbal description and other input data of complex situation for testing
- 2. Select key operational factors for examination
- 3. Formalize flight test scenario
- 4. Define subset of output flight variables for analysis
- 5. Define ranges of variation of examined operational factors
- 6. Tune system model (VATES package) to given flight situation
- 7. Develop "virtual flight test" plan
- 8. Conduct flight simulation experiments (for sensitivity analysis, piloting tactics development, etc.). Record "flights" in output database
- 9. Prepare graphics and other output formats. Analyze results
- 10. Write report. Identify conditions of possible "chain reaction". Propose recovery tactics and/or design improvements if applicable/possible

Note: * - without connection to present T&E practices

Test Case Details

Vehicle type and flight situation under study

XV-15 experimental tilt-rotorcraft


Landing in auto-rotation with two engines out at altitude of 200 ft

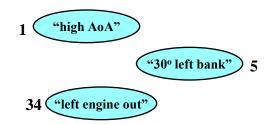
Key operational factors

- 1. Engines power out
- 2. Collective control
- 3. Vehicle pitch control
- 4. Flaps position
- 5. Decision events timing (based on vehicle altitude, speed, and attitude)

Situation duration

Examined Complex Flight Condition

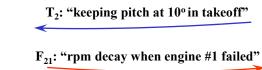
– Initial Conditions of Flight


Gross Weight	14000.0	lb
C.G. (S.L.)	299.8	inch
Altitude	575.0	ft
Pressure Altitude	575.0	ft
Calibrated Airspeed	110.0	knots
Pitch Angle	-5.0	deg
Collective Position 10).0 in	nch
R.P.M. Selection	517.6	rpm
Center Rotor R.P.M.	517.6	rpm
Mast Tilt Angle	10.0	deg
Horizontal Stabilizer Incidence	2.0	deg
Flaps Position	0.0	deg
Landing Gear	On	-
SCAS	On	-
Flight Duration	32.0	sec

- Main Concepts

Flight event

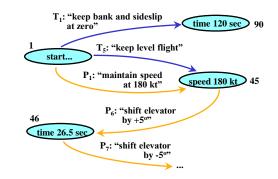
The **flight event** is a special state of the system which is important to the pilot/designer and stands for a substantial change in the flight situation, e.g.:


- "left engine out"
- "speed VR achieved"
- "altitude 360 ft and speed 180 kt"
- "on the runway"
- "high angle of attack"
- "30° left bank"
- "go-around decision"

Flight process

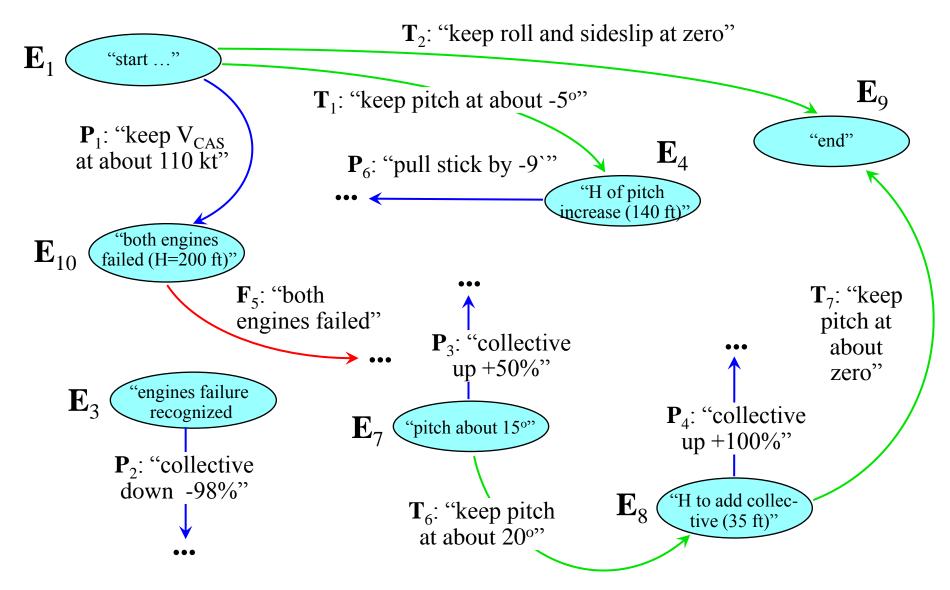
The **flight process** is a time-history of one or several flight parameters which characterize a certain aspect of the system behavior (dynamics, control, weather, etc.), e.g.:

- "steer runway's centerline"
- "keep pitch at 10° in takeoff"
- "apply windshear (10 ft/s /H=30 ft)"
- "rpm decay during engine #1 failure"
- "extend flaps from 0° to 15° "
- "turn at 10° bank and 0° sideslip"
- "apply wet runway condition (μ =0.3)"



P7: "flaps down from 0° to 15°"

Flight scenario


The **flight situation scenario** is a plan of a flight situation. It specifies the content of flight and control in this situation. Flight scenarios are depicted as directed graphs. Examples:

- "normal takeoff"
- "aborted takeoff with engine #1 out"
- "landing in crosswind conditions"
- "groundroll on wet runway"
- "coordinated turn at 15° bank"
- "stall in takeoff configuration"
- "cruise mode at 600 kt & 30000 ft"

These concepts provide simple, yet powerful language for generic formalization of the majority of complex flight situations for model-based testing

Scenario S: "XV-15 Auto-Rotation Landing (Two Engines Out)"

Notes: 1. Only 7 events and 10 processes constitute this very complex flight situation scenario. 2. Shown are nominal parameters of switching events and processes.

Flight Situation Scenario Input Data Example

.0 .0 .0 .0 .0

.0 .0 .0

Initial conditions of flight

101 (#3) initial conditions 2 10 1 1 (I5,1X,9A4,F11.3,2X,A8)

88	GW	- GROSS WEIGHT	14000.000	LB
102	SLCG0	- A/C C.G. S.L. @BETAD=0	299.800	IN
104	WLCG0	- A/C C.G. W.L. @BETAD=0	81.650	IN
35	HEIGHT	- A/C POSITION GROUND AXIS Z	575.000	FΤ
115	PRSALT	- PRESSURE ALTITUDE	575.000	FΤ
114	VKCAS	- CALIBRATED AIRSPEED	120.000	KNOTS
51	PITCH	- PITCH ANLGE	-5.000	DEGR
14	XCOL	- COLLECTIVE STICK POSITION	10.000	IN
23	RPMSEL	- RPM SELECTION	517.600	RPM
22	OMEGR0	- CENTER ROTOR RPM	517.600	RPM
66	MAST T	ILT ANGLE	10.000	degr
18	XIH	- HORIZONTAL STAB INCIDENCE	2.000	DEGR
20	XFLAPS	(POSITION INDICATOR)	1.000	-
24	landing	g gear ON	1.000	-
119	SCAS OI	N (1) OR OFF (0)	1.000	-
31	IPSCAS	ON (1) OR OFF (0) PITCH	1.000	-
32	IRSCAS	ON (1) OR OFF (0) ROLL	1.000	-
33	IYSCAS	ON (1) OR OFF (0) YAW	1.000	-
107	flight	duration	32.000	s

Piloting tasks

104 piloting tasks 0 16 4 0 (i2,2i3,i2,8a4,4i3,2(1x,f4.3),2(1x,f3.2))

1	1	40}	keep pitch	at -5 deg	11	0	0	0	.050	.050	.05	.05
2	1	90 s	sideslip &	roll at O	12	13	0	0	.050	.050	.05	.05
6	7	80}	keep pitch	at 20 deg	11	0	0	0	.050	.050	.05	.05
7	8	90}	keep pitch	at 0 deg	11	0	0	0	.050	.050	.05	.05

Control procedures

103 (#3) procedures 0 17 3 0 (12,213,12,5A4,1X,A3,413,A4,213,F6.1, 2F4.1)

1	1	10	0	keep CAS=110 kt	THR	73	74	0	0	0	0	110.0-5.0 .3
5	10	0	0	shut down engines	ABS	73	74	0	0	0	0	.0 .0 9.0
2	3	0	0	collect. down 98 %	ABS	14	0	0	0	0	0	.2 .0 9.0
3	7	0	0	collect. up 50 %	ABS	14	0	0	0	0	0	5.0 .0 9.0
4	8	0	0	collect. up 100 %	ABS	14	0	0	0	0	0	10.0 .0 9.0
6	4	0	0	pull stick by -9 in	REL	11	0	0	0	0	0	-9.0 .0 5.0

Flight events

102 flight events 2 0 17 3 0 (i2,i3,6a4,4i3,i4,a2,a4,i3,i2,f8.2,f4.1,f4.1)

1	0	start	35	38114	51	105GE	0	0	.00
2	0	time 20 sec	35	38114	51	105GT	0	0	20.00
4	0	1st pitch increase	35	38114	51	35LE	0	0	120.00
5	0	2nd pitch increase	35	38114	51	35LE	0	0	100.00
6	0	3rd pitch increase	35	38114	51	35LE	0	0	80.00
7	6	pitch 15 deg	35	38114	51	51GE	0	0	15.00
8	7	collective to pull	35	38114	51	35LE	0	0	55.00
10	3	engines failure	35	38114	51	35AE	0	0	200.00
3	0	H=200ft + X s	35	38114	51	35AE	0	0	200.00
9	0	end	35	38114	51	105GT	0	0	150.00

State observers

105 (#3) observers 0 10 5 0 (i2,2i4,4a4,a4,i4,i3,f8.2,f8.4,2f6.2,f6.3)

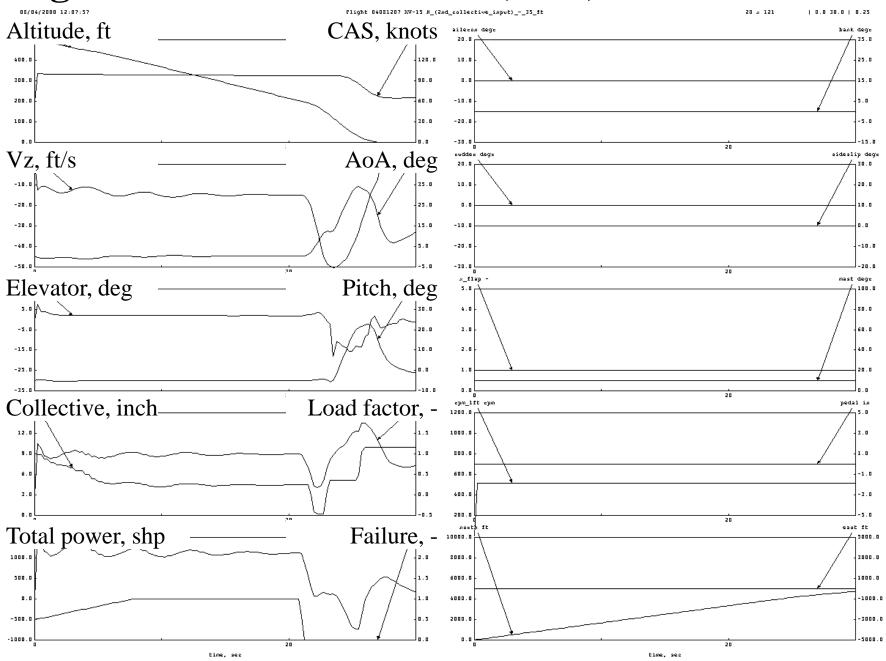
0	12	52 roll*	0	0	.00	0150	.30	.15	.050
0	12	55 roll accel.	0	0	.00	0100	.30	.15	.050
0	11	54 pitch rate	0	0	.00	.0300	.30	.15	.050
0	11	57 pitch accel.	0	0	.00	.0100	.30	.15	.050
0	13	6 sideslip*	0	0	.00	.0050	.30	.15	.050
1	11	51 pitch	0	0	-5.00	.0300	.60	.30	.050
2	12	49 bank	0	0	.00	0070	.60	.30	.050
2	13	2 slip angle	0	0	.00	.0030	.60	.30	.050
6	11	51 pitch	0	0	20.00	.0300	.60	.30	.050
7	11	51 pitch	0	0	.00	.0300	.60	.30	.050

Flight Simulation Examples

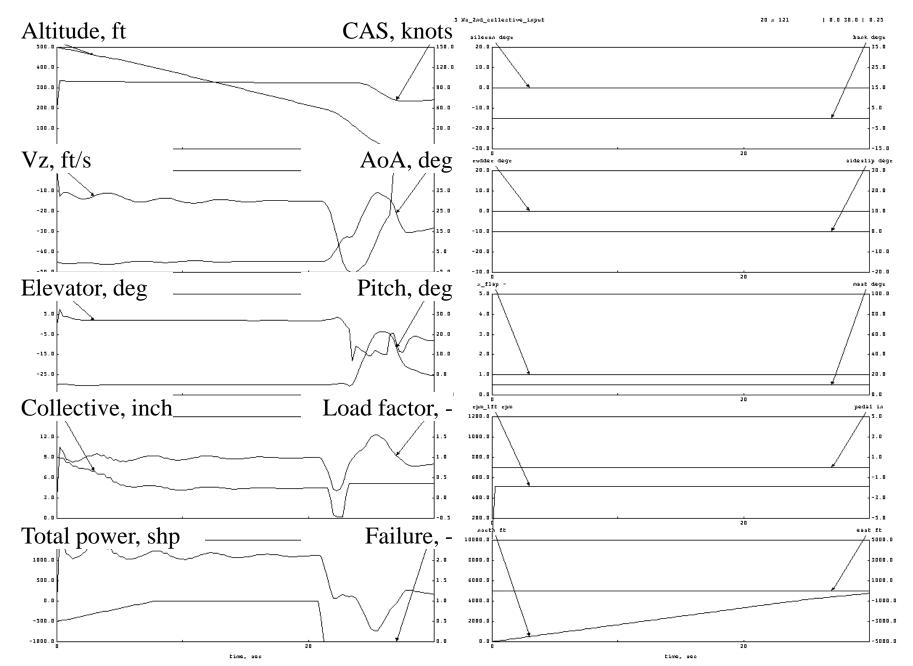
Variation of event $\mathbf{E_8}$: "Altitude to add collective": { 30, <u>35</u>, 40, 45, 50} ft

Variation of event E_4 : "Altitude to increase pitch": { 120, 125, 130, **135**, <u>**140**</u>, 145, 150} ft

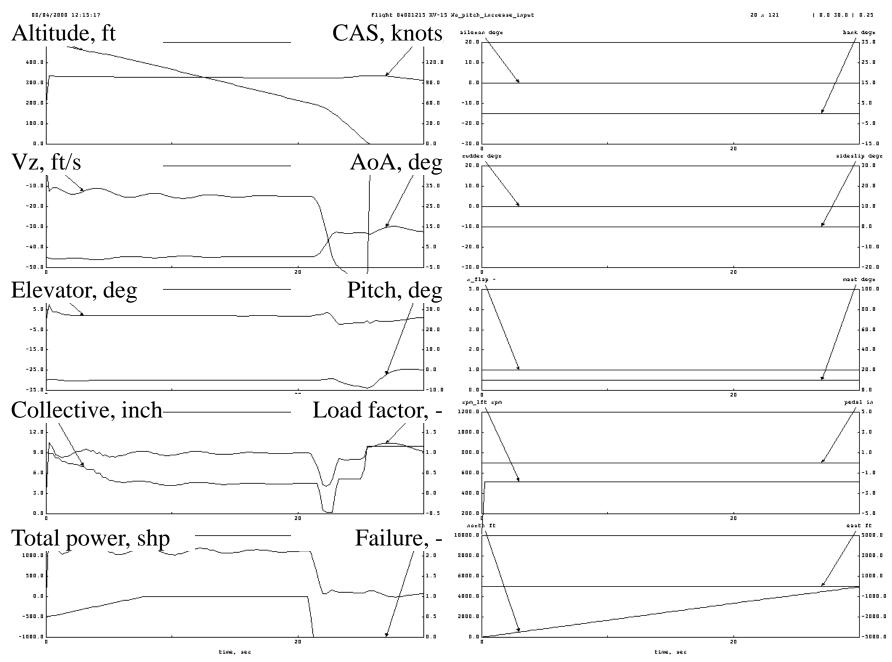
Second collective pull-up input: { <u>yes</u>, no }

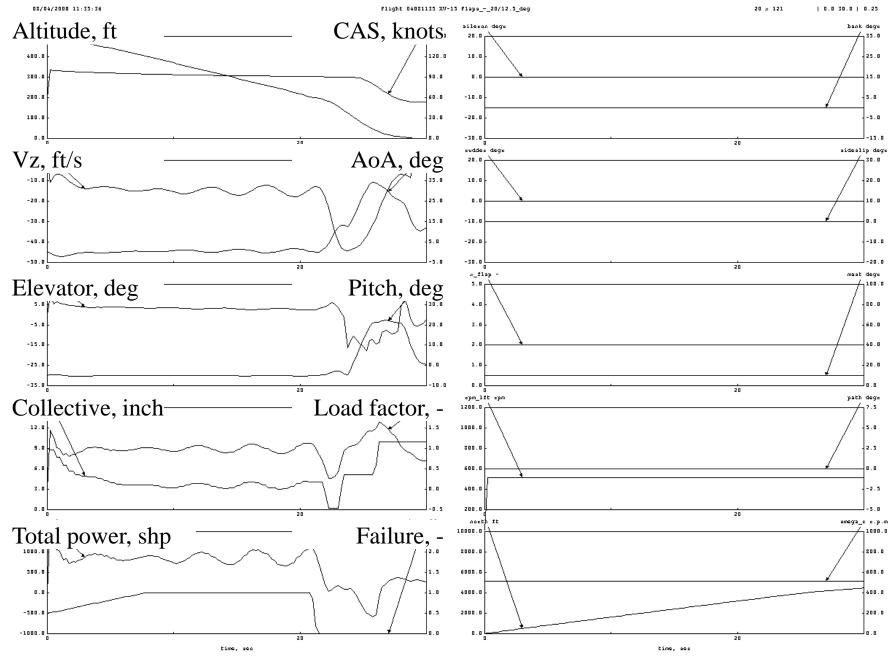

Pitch increase at event E_4 : "Altitude to increase pitch": { <u>yes</u>, no }

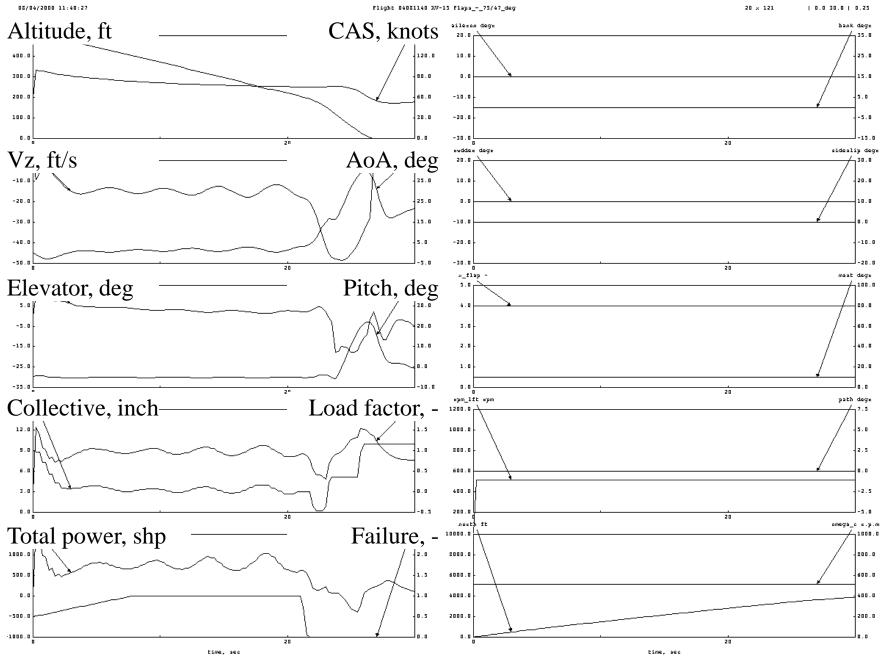
Variation of goal pitch in piloting task T_6 : "keep pitch at goal level": { 15°, <u>20</u>°, 25°, 30°, 35°}"


Variation in flap position: all settings, including $\underline{0}^{\circ}/\underline{0}^{\circ}$

Note: **<u>underlined</u>** are nominal parameters


Flight 1209: Nominal Case (Safe)


Flight 1213: No 2nd Collective Input (Unsafe)


Flight 1215: No Pitch Increase (Unsafe)

Flight 1135: Nominal Case, Flaps = 20°/12.5° (Safe)

Flight 1140: Nominal Case, Flaps = 75°/47° (Unsafe)

XV-15 Model Recovery Scenario

1. Immediately after engines failure has been recognized, push collective down to increase rotor r.p.m. and rotor's kinetic energy.

2. Within altitude range of 135-145 ft pull longitudinal stick by -9 inch to increase pitch (lift and drag). Avoid wing stall.

3. When pitch is within $15^{\circ}-20^{\circ}$, pull collective up by about 5 inch (~50%). Maintain pitch at this level (~20°) until altitude of 35-45 ft is reached.

4. At altitude of about 35-45 ft apply maximum collective (100%) to convert kinetic energy of rotors into additional lift. Keep landing pitch at about $0^{\circ}-5^{\circ}$ to secure a touchdown rate of descent within 5-10 ft/s. Use small pitch adjustments for this purpose.

NB: Only <u>combined</u> pitch and collective control work.

Conclusion - 1

1. The autonomous flight situation modeling and simulation technique can be used for quantitative fast-time analysis of the "pilot (automaton) - tilt-rotorcraft - environment" system dynamics under complex (multi-factor) operational conditions.

2. Legacy flight simulation codes, such as GTRSIM, combined with the autonomous flight situation modeling and simulation technique (VATES) can be used as virtual test articles.

3. The developed virtual flight analysis process is systematic, fast, affordable, detailed and flexible. Expert piloting and programming skills and expensive test/simulation equipment are not required.

4. Given a complex flight condition with two engines out, a marginally safe autorotation landing of the XV-15 flight model is possible. The identified hypothetical recovery scenario is essentially a <u>combination</u> of proper pitch and collective control (sequence, parameters) and correct synchronization of these control processes (switching events).

Conclusion - 2

5. The autonomous flight situation modeling and simulation technique may complement manned simulation and flight test methods As a result, the number of required test and simulation hours can be reduced with a simultaneous increase in the volume and quality of output knowledge of the system behavior in critical situations.

6. The developed techniques and obtained results can be used for: new vehicle design, piloting tactics and flight manual development/update, pilot training, and flight test program planning and rehearsal.

7. Further studies would be expedient to conduct in order to:

- verify the identified hypothetical recovery scenario in simulations and flight tests
- add algorithms of undercarriage kinematics and dynamics to the system model
- study effects and identify allowed variation limits of other demanding conditions (e.g.: windshear, pilot errors, mechanical failures, motion asymmetry)
- conduct a more systematic exploration of the auto-rotation sub-domain using VATES knowledge generation/mapping and statistical experiment techniques