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Research Task FormulationResearch Task Formulation

Problem
‘Theoretically improbable’ complex (multi-factor) situations do occur in flight test and operation 
often leading to an incident/accident. These anomalous multi-factor cases are difficult to identify in 
advance – during the design, test & certification/evaluation phases – due to combinatorial, 
t h i l ti d b d t t i ttechnical, time and budget constraints.

Solution
Approach 

‘Knowledge is Power’. The ‘operator (pilot, automaton) – aircraft/ project – operational 
environment’ system model is employed as a ‘knowledge generator’ of complex flight situation 
domains. A broad set of realistic multi-factor scenarios is designed, virtually tested and assessed

Overall
Goal

Demonstrate an affordable and easy-to-use methodology of a ‘bird’s eye view’ level M&S, 
depiction, analysis and prediction of the aircraft safety performance in complex conditions. 

pp domains. A broad set of realistic multi factor scenarios is designed, virtually tested and assessed 
in advance using fast-time ‘what-if’ modeling and simulation (M&S) experiments. 

Main 
Tasks

Develop theoretical framework for planning and examination of a broad domain of potentially 
unsafe multi-factor situations using the system model. Design anthropomorphic maps to represent 
M&S knowledge to designers, flight test engineers/ pilots. Demonstrate feasibility of knowledge-
centered M&S based methodology for flight safety prediction and assessmentcentered M&S based methodology for flight safety prediction and assessment. 

Methods
& Tools

Experimental and computational aircraft aerodynamics, flight dynamics, situational control, 
complex flight domain theory, mathematical modeling, numeric techniques, simulation experiment, 
artificial intelligence (AI), graph theory, dynamic data structures, computer graphics, VATES 

Classic techniques + modern techniques = new analytical potential for affordable, fast-time analysis of the

& Tools g ( ) g p y y p g p
(Virtual Autonomous Test & Evaluation Simulator, v. 7) proprietary software tool, PC Pentium-IV, 
MS Windows, MS Office, Pfe, MAGE, etc.
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Classic techniques  modern techniques  new analytical potential for affordable, fast time analysis of the 
‘operator (pilot, automaton) – aircraft/ project – operational environment’ system safety properties in advance.
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MicroMicro-- and Macroand Macro-- Structural ModelsStructural Models
Of a Complex Flight Situation DomainOf a Complex Flight Situation Domainp gp g
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Micro- and macro-structures of flight are 
generalized and interconnected knowledge models.

Macro structure 
of flight of flight 
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Fractal Model of Ideal Process of Fractal Model of Ideal Process of 
Human Pilot’s Experience Growth Human Pilot’s Experience Growth 

In LongIn Long--Term MemoryTerm Memory

1 2 3 4 5

Legend: Characteristic levels of piloting expertise: k∈{1 2 3} – experience of a student pilot k∈{8 9 10} –

9 8 7 610

Legend: Characteristic levels of piloting expertise: k∈{1, 2, 3} – experience of a student pilot, k∈{8, 9, 10} –
experience of a professional pilot, ace, or test pilot, k∈{4, …, 7} – interim (immature) states of experience.

The most valuable asset of an expert pilot (a perfect automaton) is the reliability and comprehensiveness of 
his/her (its) knowledge of the system behavior under multi-factor (complex non-standard) flight conditions
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his/her (its) knowledge of the system behavior under multi factor (complex, non standard) flight conditions. 
Though this expertise is very difficult to gain, it is of critical importance for timely prediction, avoidance and safe 
resolution of ‘chain reaction’ type emergencies. 
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Natural Tree Analogy of Main DefectsNatural Tree Analogy of Main Defects
Of Human Pilot’s Situational Of Human Pilot’s Situational 

‘Knowledge Base’‘Knowledge Base’
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Aerospace Testing Expo EUROPE 2007 Flight Testing SeminarCopyright © 2007 intelonics Ltd. 5

Lack of systematic theoretical and practical training (thorough design and testing) under multi-factor 
conditions may result in structural disparity of a human pilot’s (automaton’s) internal ‘situational tree’ of flight.
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Safety PaletteSafety Palette. . Fuzzy ConstraintFuzzy Constraint

Color is natural and, perhaps, the 
most effective and economic medium for 
communicating safety-related

green (‘norm’), ξG

yellow/ amber (‘attention’), ξY

red (‘danger’) ξR
Safety communicating safety-related 

information to/ from an operator or 
expertblack (‘catastrophe’), ξB

grey/white (‘uncertainty’), ξW

red ( danger ), ξRPalette

F C t i t

μC(Vmax FL.D.)
1

C: ‘maximum flaps-down flying IAS’

Fuzzy Constraint 
(Example) 

dс
0 …

Vmax FL.D.

Legend: c, d – characteristic 
points of the carrier of the fuzzy 
set-constraint C, μC(x) – L.Zadeh 
membership function ‘red’‘green’ ‘black’‘yellow’

410390 [km/h]

…
…

Operational constraints, especially under multi-factor conditions of flight, are not known precisely – they
are inherently ‘fuzzy’. The notions of Fuzzy Constraint (first introduced by L.A. Zadeh) and Safety Palette

p redg ee b acye o
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y y y ( y ) y
are employed for approximate measurement of the compatibility of current system states (i.e. measured at
time instants t) with operational constraints for key System Model Variables.
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Partial Safety Spectra. Integral Safety Partial Safety Spectra. Integral Safety 
Spectrum of a Flight Situation Spectrum of a Flight Situation 

Legend: Σk – partial safety spectrum 
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Integral Safety Spectrum Calculation Algorithm:
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(ξ(t) = max ξ(xk(t)), k = 1, …, p) ⇒ (ξ(t)∈Σ ∧ Σ = ξ(t*) || ξ(t*+Δ) || ξ(t*+2Δ) || … || ξ(t*))

After having measured current safety levels for all monitored variables xk at all time instants of a flight
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After having measured current safety levels for all monitored variables xk at all time instants of a flight
situation, a family of Partial Safety Spectra Σk, k = 1, …, p, and an Integral Safety Spectrum Σ are obtained.
The sources of flight data are: computer M&S, manned flight simulation, test and operational flight records.
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Safety Classification CategoriesSafety Classification Categories

In order to measure the vehicle’s safety performance in some flight situation as a whole, a generalized
‘safety ruler’ consisting of five Safety Classification Categories I, …, V is employed. Why five? – Because
experts cannot reliably recognize and use more than 5-10 gradations of a complex difficult-to-formalize
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experts cannot reliably recognize and use more than 5 10 gradations of a complex, difficult to formalize
system-level property (e.g.: Cooper-Harper scale). ‘Light green’ and ‘orange’ colors are added to Safety
Palette to denote interim Categories II-a and III, respectively.
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Flight Safety ‘Topology’Flight Safety ‘Topology’
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3 ‘Slope’ (reversible state
transitions)

6 ‘Precipice’ (abrupt, irreversible
state transitions,‘chain reaction’) 

be defined within the Flight 
Safety ‘Topology’:
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Basic Flight Scenarios Basic Flight Scenarios 

Basic (Baseline) Scenario Si is a plan of some ‘central’ situation (i.e., the situational tree’s trunk) – be
it standard or non-standard one. Its variations – derivative cases – are to be virtually tested in M&S
experiments. The goal is to evaluate the effects of selected key operational/ design factors and
operational/ design hypotheses on flight safety The sources of data for planning basic scenarios are:

Aerospace Testing Expo EUROPE 2007 Flight Testing SeminarCopyright © 2007 intelonics Ltd. 10

operational/ design hypotheses on flight safety. The sources of data for planning basic scenarios are:
airworthiness requirements (АП, FAR, JAR), flight test data/ programs, ACs, Pilot’s Manuals, actual flight
data records, flight accident/ incident statistics.
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Joint Graph of Basic Flight ScenariosJoint Graph of Basic Flight Scenarios
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A Flight Situation Scenario is depicted as a directed graph. Scenario graphs are clear and compact maps
of flight situation content and logic. Scenarios S1, …, S6 are structurally close. They can be easily modified.
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Operational Factors for TestingOperational Factors for Testing
In M&S Experiments (Examples)In M&S Experiments (Examples)

Operational /Design Factors are modified or new events and/or processes, which – after having
been added to a basic scenario – can improve or worsen the aircraft’s safety performance. There are
three groups of operational factors: ‘operator’ ‘aircraft’ and ‘external environment’ The sources of
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three groups of operational factors: operator , aircraft and external environment . The sources of
information on operational factors are: national airworthiness requirements, FMEA, statistics on flight
operations, accidents and incidents.
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Design Field of Operational HypothesesDesign Field of Operational Hypotheses
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independent
dependent
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Г13 - operational hypothesis multi-factor combinations on flight safety. 
These multi-factor combinations are called 
operational/ design hypotheses.
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Plan & Statistics of M&S ExperimentsPlan & Statistics of M&S Experiments
For Selected HypothesesFor Selected Hypotheses

A composition of a basic scenario Si and an operational hypothesis Гk in a M&S experiment generates
a family of derivative (‘neighboring’) situations – a Situational Tree Si⋅Гk. Construction of a ‘forest’ of such
trees – based on FMEA, flight test, operation or incident/ accident data – and studying their safety
‘topology’ are the overall goal of virtual flight test & evaluation/ certification Situational trees are thought
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topology are the overall goal of virtual flight test & evaluation/ certification. Situational trees are thought
as a valuable artificial substitute for missing statistics on multi-factor flight accident/incident patterns.
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SS22⋅⋅ГГ22: Normal Takeoff. Variations: Normal Takeoff. Variations
Of CrossOf Cross--Wind Velocity and ‘WheelsWind Velocity and ‘Wheels --

Runway Surface’ Adhesion FactorRunway Surface’ Adhesion Factor

μ k Wi
Integral Safety Spectra Safety Chances Distribution

μ k⋅Wy

g

i

1912II-a
3321I
χj, %njξjCategory

3522IV
106III
32II-b

Legend: i ‘flight’ code k = 10-1 nj number of ‘flights’ belonging to

10063Σnj, Σχj | S2⋅Γ2:
00V

Legend: i – flight  code, k = 10 1, nj – number of flights  belonging to 
safety cluster Kj, χj – safety chances at ξj level, ξj ∈ {ξI , … , ξV}

Scenario variants with strong cross-wind (|15| … |20| m/s)
exhibit danger (enter ‘red’ zones) during groundroll, up to theexhibit danger (enter red zones) during groundroll, up to the
event E3 (VR) - ref. next slide for a safety window. Dangerous
variants constitute some 45% of the situation domain
belonging to the composition S2⋅Г2. Remaining situations
(55%) are safe. They belong to Categories I and II. Note how
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(55%) are safe. They belong to Categories I and II. Note how
the location of events E3 and E7 in the integral safety spectra
is changed due to the effect of (μ, Wyg) combinations.
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SS22⋅⋅ГГ22: Normal Takeoff. Variations: Normal Takeoff. Variations
Of CrossOf Cross--Wind Velocity and ‘WheelsWind Velocity and ‘Wheels --

Safety Window

Runway Surface’ Adhesion FactorRunway Surface’ Adhesion Factor
Safety Window

3 3

3 3

Shown above is a Safety Window constructed for the situational tree S Г It contains one centralShown above is a Safety Window constructed for the situational tree S2⋅Г2. It contains one central
green ‘valley’, two side red ‘hills’ and two connecting ‘slopes’: a steep ‘slope’ – for semi-wet and dry
runway (μ = 0.5. … 0.8), and not steep ‘slope’ - for wet and water-covered runway (μ = 0.2. … 0.4). As
the absolute value of cross-wind velocity increases, the transition from a safe state to a dangerous state
occurs sharply and gradually respectively The shape and position of the ‘cross wind velocity
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occurs sharply and gradually, respectively. The shape and position of the cross-wind velocity –
adhesion factor’ constraint can be seen as well.
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SS44⋅⋅ГГ66: Normal Takeoff: Normal Takeoff. . VariationsVariations
Of Wind Shear Intensity and Errors Of Wind Shear Intensity and Errors 

of Selection of Flapof Selection of Flap--up Start Altitudeup Start Altitude

6

(Note: in the baseline scenario S θ /θ = 8o/8o) If a ‘strong’ or

00II-b
00II-a
00I

χj, %njξjCategory
(Note: in the baseline scenario S4 θG1/θG2 = 8o/8o). If a strong or

worse wind shear is expected (kW ≥ 1), takeoff must be prohibited. In
order to evaluate the possibility of safer outcomes at kW < 1, it is
expedient to expand the safety window downward. If the wind shear
intensity increases from ‘very strong’ (k > 1 4) to ‘hurricane’ (k = 2)

10078j j | S Г
2721V
4233IV
3124III
00II-bintensity increases from very strong (kW > 1.4) to hurricane (kW = 2),

‘precipice’ type transitions (6) are most likely to occur at flap-up start
altitude HFL∈[60; 70] м. If the vehicle unintentionally enters a zone of
‘very strong’ wind- shear (kW = 1.2 …1.6) high-lift devices must be
retracted as late as possible to keep the vehicle within the right hand
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10078Σnj, Σχj | S4⋅Г6:retracted as late as possible to keep the vehicle within the right-hand
‘orange’ zone.
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SS44⋅⋅ГГ77: Normal Takeoff. Forward C.G.: Normal Takeoff. Forward C.G.
Variations of Wind Shear IntensityVariations of Wind Shear Intensity

And Commanded Flight Path AnglesAnd Commanded Flight Path Angles

6

00II b
1411II-a
43I

χj, %njξjCategoryThe main safety topology objects of the composition S4⋅Г7 are: a
small green ‘valley’ located at the left-hand lower corner, an orange
‘slope’, and an extensive red ‘hill’ adjacent to a black ‘abyss’ at the
right hand upper corner At takeoff under ‘strong’ and ‘very strong’ wind

1713V
3729IV
2822III
00II-bright-hand upper corner. At takeoff under ‘strong’ and ‘very strong’ wind

shear conditions (1 < kW ≤ 1.6), a maximum possible safety level is
achieved at θG1/ θG2 = 5o/3o. Therefore, attempts of climbing at θG1/ θG2
> 7o/5o must be prohibited, and a zone of irreversible transitions is likely
to enlarge significantly at θ ≥ 12o
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10078Σnj, Σχj | S4⋅Г7:
to enlarge significantly at θG1 ≥ 12o.
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SS55⋅⋅ГГ1010: Continued Takeoff: Continued Takeoff. . Engine Out at Engine Out at 
VVEFEF. . Variations of Engine Out Speed and Variations of Engine Out Speed and 

CrossCross--Wind VelocityWind Velocity

6

6

1516II-a
2728I
χj, %njξjCategory

This safety window contains one central green ‘valley’ and two
side red ‘hills’. Adjacent to the left-hand ‘hill’ is a potentially
catastrophic ‘abyss’ located at the lower left hand corner It

1212V
1313IV
2021III
1314II-bcatastrophic abyss’ located at the lower left-hand corner. It

corresponds to small and medium values of VEF and is linked to the
‘valley’ by ‘precipice’ type transitions (6). A small ‘abyss’ is also
revealed at a cross-wind velocity of ~18 m/s and engine-out speed
of V [175; 190] km/h
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100104Σnj, Σχj  | S5⋅Γ10

1212Vof VEF∈[175; 190] km/h.
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SS44⋅⋅ГГ1212: Takeoff. ‘Strong’ Wind Shear. : Takeoff. ‘Strong’ Wind Shear. 
Errors of Selecting CommandedErrors of Selecting Commanded

Flight Path and Bank Angles in ClimbFlight Path and Bank Angles in Climb

6 6

1519II a
1317I
χj, %njξjCategory

Safety ‘topology’ obtained for ‘strong’ wind shear conditions at
small flight path angles θG1 and any bank angles γG contains a

4661IV
11III
1519II-b
1519II-ag p g G1 y g γG

stable catastrophic ‘abyss’ (a black strip at the bottom of the
window) and ‘‘precipice’ type transitions (6). It means that attempts
of climb at small values of the commanded flight path angle (1o …
2o) would inevitably lead the vehicle to a fatal outcome.
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100130Σnj, Σχj | S4⋅Γ12

1013V
) y
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Situational Trees and ShortSituational Trees and Short--Term Term 
Prediction of Flight SafetyPrediction of Flight Safety

Legend: to – current flight time,  t* – prediction start time,  t* – prediction stop time, τ = (t* – to) – decision-
making delay,  Δt = (t* – t*) – prediction time range (depth of tree-based multi-factor domain exploration)

tsafety prediction 
sub-tree

multi-factor situationmulti-factor situation 
domain exploration 
cone (‘future-looking 
knowledge radar’)

Δt

ττ t*
t0
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The situational tree construction and tree-based safety prediction (a ‘what-if’ analysis) 
technique accounts for physics and logic of a multi-factor flight situation domain.
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RealReal--Time Safety Knowledge Map Time Safety Knowledge Map 
(Dynamic Safety Window) Example(Dynamic Safety Window) Example( y y ) p( y y ) p

A time-history of safety windows and safety 
chances distribution pie charts is shown. It 
corresponds to a notional complex flight 

t = t0: ‘benign weather’ forecast

co espo ds o a o o a co p e g
situation domain - a union of three compositions 
S4⋅(Г11+Г12+Г13): ““Normal takeoff. Possible 
variations of wind-shear intensity, errors/ 

i ti i i t i i d d fli ht th

t0

The concept of Dynamic Dafety Window is based 

variations in maintaining commanded flight path 
and bank angles during initial climb”.

t = t1: ‘strong’ wind-shear warning

on the use of a ‘forest’ of situational trees. Provided 
that key operational factors are measurable on 
board the vehicle in real time, the dynamic safety 
window can be used as a medium for coherent 

t1

monitoring of tactical goals and constraints of flight 
under uncertainty. Safety Chances Distribution pie 
charts are expedient to use in onboard safety 
indicators to monitor current states and predict the 

t = t2: ‘very strong’ wind-shear warning

dynamics of the system safety chances under 
anticipated operational conditions during flight.

Note that in this particular example, the share of 
t2
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‘red’ and ‘black’ scenario options increases at the 
expense of reducing the share of safer outcomes.

time
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SS66⋅⋅ГГ1414: Low: Low--Altitude Flight in the Altitude Flight in the 
Presence of Urban Obstacles (‘9/11’)Presence of Urban Obstacles (‘9/11’)

S6⋅Γ14 | t19

S |

t0 t1 t2 t3 t4 t5 t6
S↓t7

S0 tower building type 
obstacle (top view)

S6⋅Γ14 | t13

Legend: 
S0 S↓ S↑ - scenario segments S0 - obstacle

S↑

Scenario time lines

‘yellow’ and ‘red’ 1212
1313 1616

1717

1818

1919

S0, S↓, S↑ scenario segments, S0 obstacle 
approach, S↓ - imminent collision, S↑ - collision 
avoidance, S6⋅Γ14 | ti - tree projection at ti

yellow  and red
zones of the 

obstacle’s fuzzy 
constraint

1010

1212
1111

66
7788

99

1515
1414

S6⋅Γ14 | t1
S0 ∪ S↓ - terrorist-/ fool-type 

control, S0 ∪ S↑ - AI-based self-
preservation control.

24
20
16
12
8
4
0

S6⋅Γ14 | t1
24
20
16
12
8
4
0

IAS ∼ 320÷360 km/h
22

33

44

55

S6⋅Γ14 | t13

-4
-8
-12

tower building 
type obstacle

( id i )

-4
-8
-12 11

00

--11H ∼ 200 ÷ 300 m
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Note: not to scale1 2 3 4 5 6 7 8 9 10 11 12 1313-1 0 i

(side view)
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‘Bird’s Eye’ View of the Dynamic ‘Bird’s Eye’ View of the Dynamic 
Safety Window Tree for Catastrophic Safety Window Tree for Catastrophic 

and Recovery Scenariosand Recovery Scenarios
This safety window time-history provides 

S S

y y p
a systematic – ‘bird’s eye’ view level –
picture of two alternative scenarios of aircraft 
flight control in the presence of an urban type 
obstacle, as a part of a multi-factor flight 

S S
Legend: 

S↓ S↑
, p g

situation domain-‘neighborhood’.S↓ S↑

Scenario segments:
S0 – obstacle approach
S↓ – imminent collision
S↑ – AI based collision avoidancet6

t7

‘last chance 
f ’ S↑ AI based collision avoidance

Scenario development time lines: 
{t0, t1, ..., t7} – S0
{t8, ..., t13} – S↓

t4

t5
6 for recovery’ 

(‘fate switch’) 
point

{t8, ..., t13}  S↓
{t14, ..., t19}  – S↑

Key time instants: 
t7 – ‘last chance for recovery’

S0

t1

t2

t3 S0
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t7   last chance for recovery
t13 – ‘just before impact’
t19 – ‘safety restoration complete’t0

t1
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Safety Chances DistributionSafety Chances Distribution
TimeTime--History for Two Control TacticsHistory for Two Control Tactics

AI based self-preservation control tactics
A B C D H J LI K

terrorist-/ fool-type control tactics
A B C D E F G

60

80

100

χj, 60

80

100

χj, 

0

20

40

1 0 1 2 3 4 5 6 7 14 15 16 17 18 19

%

0

20

40

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

%

Legend: A, B, …, L – characteristic states of the aircraft safety dynamics;  χj – safety chances at ξj level, 
j∈{I, II-a, II-b, III, IV, V}; ti – flight time instants, i∈{-1, 0, 1, …, 13} ∨ i∈{-1, 0, 1, …, 7, 14, 15, .., 19}. 

VIVIIIII bIII Safety Classification Categories and Safety Colors

-1 0 1 2 3 4 5 6 7 14 15 16 17 18 19-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
i i

Characteristic states {A, B, C, …, L} of the vehicle’s safety dynamics and their recognition criteria are 
expedient to use in the automatic or manual recovery decision-making process in emergency situations 
under uncertainty In accordance with the self preservation imperative for a civil aircraft flight control

VIVIIIII-bII-aI – Safety Classification Categories and Safety Colors.

under uncertainty. In accordance with the self-preservation imperative for a civil aircraft, flight control 
authority in a life-threatening situation must be dynamically assigned/transferred to a most competent agent.

A detailed presentation of this case study, titled UAV "Built-in" Safety Protection: A Knowledge-Centered 
Approach hich introd ces the D namic Safet Windo Safet Chances Distrib tion and some other
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Approach, which introduces the Dynamic Safety Window, Safety Chances Distribution and some other 
concepts indended for real-time applications, is planned (tentatively) to make at the AUVSI’s Unmanned 
Systems Europe 2007 Conference, 8-9 May 2007, Hilton Cologne, Köln, Germany.
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ConclusionConclusion

1. The presented methodology is an affordable M&S tool for an aircraft/ project ‘virtual flight 
testing’ in multi-factor situations. It is specially designed for quick, ‘bird’s eye view’ level 
analysis of the vehicle’s safety performance under uncertainty based on M&S data. y y p y

2. The goal is to help identify in advance anomalous scenarios (‘theoretically improbable’ 
cases) in the ‘operator (pilot, automaton) – aircraft – operational environment’ system behavior, 
taking into account physics and logic of a ‘what-if’ flight situation domain.g p y g g

3. The methodology is expedient to integrate into MDO systems, FMEA tools, flight test 
planning/ ‘rehearsal’ and output data analysis processes, and test pilot theoretical training.

4. However, a reliable 'parametric definition' of the vehicle under study is a pre-requisite for 
obtaining valid results from the system model. It must encapsulate a subdomain of the vehicle 
motion, control and operational modes of interest.

5. Potential application fields include the following:  
advanced assessment of combined effects of the vehicle aerodynamics, flight control 
and operational conditions on its safety performance 
rehearsal of flight test cases under difficult-to-manage multi-factor conditions in M&Srehearsal of flight test cases under difficult-to-manage multi-factor conditions in M&S
knowledge-centered training of test pilots, pilot instructors, and line pilots
research into terrorist-/ fool-proof AI systems for aircraft safety protection 
research into UAV autonomous control and collision avoidance under uncertainty. 
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6. The overall goal is to help design and test aircraft with ‘built-in’ safety features based on 
virtual (not actual) statistics of ‘incidents’/ ‘accidents’ derived from branching M&S experiments.
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Thank You.Thank You.

Questions, please …Questions, please …Questions, please …Questions, please …
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